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Chapter 1

Introduction

This is a solutions manual for Stochastic Differential Equations by Bernt Øksendal. This is a
working document last updated May 3, 2021. Progress to date:

• Chapter 2: Problems #1-17

• Chapter 3: Problems #1-17

• Chapter 4: Problems #1-15

• Chapter 5: Problems #1-17

• Chapters 6–12: none so far
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Chapter 2

Some Mathematical Preliminaries

1. Suppose X : Ω→ R is a function that assumes countably many values {aj} in R.

(a) Note that X is a random variable if and only if it is measurable. If X : Ω → R is
measurable, then U = X−1(R \ ak) ∈ F and thus X−1(ak) = Ω \ U ∈ F , ∀k. On the
other hand, if X−1(ak) ∈ F , ∀k, then Borel set V ⊆ R, X−1(V ) =

⋃
ak∈V X

−1(ak) ∈
F and thus X is measurable.

(b) Compute E(|X|) =
∫
R |x| dPX =

∫⋃∞
k=1{ak}

|x| dPX =
∑∞

k=1 |ak|P(X = ak).

(c) If E(|X|) <∞, then the series

E(X) =

∫
R
x dPX =

∫
⋃∞
k=1{ak}

x dPX =
∞∑
k=1

akP(X = ak)

is absolutely convergent and therefore converges.

(d) If f is measurable and |f | is bounded by M , then

E(|f(X)|) =

∫
R
|f(x)| dPX ≤

∫
R
M dPX = M

∫
R
dPX = M <∞.

Hence,

E(f(X)) =

∫
R
f(x) dPX =

∫
⋃∞
k=1{ak}

f(x) dPX =
∞∑
k=1

f(ak)P(X = ak)

is absolutely convergent and therefore converges.

2. Let F (x) = P(X ≤ x) be the distribution function of X .

(a) By monotonicity of P, 0 = P(∅) ≤ P(X ≤ x) ≤ P (R) = 1. Now, by the Monotone
Convergence Theorem,

lim
n→∞

F (n) = lim
n→∞

∫
R
χ(−∞,n] dP(x) =

∫
R
dP(x) = 1.

3



CHAPTER 2. SOME MATHEMATICAL PRELIMINARIES 4

Similarly, for G(n) := 1− F (−n), we have

lim
n→∞

G(n) = lim
n→∞

∫
R
(1− χ(−∞,−n])dPX(x) = 1.

Moreover, F is increasing by monotonicity of P and finally, again by Monotone Con-
vergence,

lim
h→0+

1− F (x+ h) + F (x) = lim
h→0+

∫
R
(1− χ(x,x+h]) dP(x) =

∫
R
dP(x) = 1

and so lim
h→0+

F (x+ h) = F (x), i.e. F is right-continuous.

(b) Compute the expectation

E(g(X)) =

∫
R
g(x) dP(x) =

∫
R
g(x)χ(−∞,x] dP(x) =

∫
R
g(x) dF (x).

(c) Compute the density of B2
t

F (u) := P(B2
t ≤ u) = P(−

√
u ≤ Bt ≤

√
u)

= 2

∫
[0,
√
u]

p(y)dy

= 2

∫
[0,u]

p(
√
u)

2
√
u
du

=

∫
(−∞,u]

χ[0,∞)
p(
√
u)√
u

du.

and so p(u) = χ[0,∞)
p(
√
u)√
u

where p(u) is the density of Bt.

3. Since Hi is a σ-algebra, ∅ ∈ Hi, ∀i ∈ I . So ∅ ∈ H = ∩i∈IHi. If {Uj}j∈N ⊆ H, then
{Uj}j∈N ⊆ Hi for each i ∈ I and so Ω \ Uj ∈ Hi and ∪j∈AUj ∈ Hi, ∀i ∈ I . Conclude that
Ω \ Uj ∈ H and ∪j∈AUj ∈ H andH = ∩i∈IHi is also a σ-algebra.

4. Let X : Ω 7→ R be a random variable with E(|X|p) <∞.

(a) Let A = {ω ∈ Ω | |X| ≥ λ > 0} and compute

E(|X|p) =

∫
Ω

|X|p dP ≥
∫
A

|X|p dP ≥ λp
∫
A

dP = λpP(|X| ≥ λ).

(b) By Chebychev, P(|X| ≥ λ) = P(e|X| ≥ eλ) ≤ 1
ekλ

E(ek|X|) = Me−kλ.
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5. Since the measures are σ-finite, f(x, y) = xy is PX ⊗ PY measurable and E(|XY |) < ∞,
apply Fubini-Tonelli and compute

E(XY ) =

∫
R2

xy dPXY (x, y)

=

∫
R2

xy dPX(x)⊗ dPY (y)

=

∫
R
y

(∫
R
x dPX(x)

)
dPY (y)

= E(X)

∫
R
y dPY (y)

= E(X)E(Y ).

6. (Borel-Cantelli) Let {Ak}∞k=1 ⊆ F and suppose
∑∞

k=1 P(Ak) <∞. Then

P(∩∞m=1 ∪∞k=m Ak) ≤ lim
m→∞

sup
k≥m

P(Ak) = 0

by dominated convergence.

7. Let Ω =
⊔n
i=1Gi.

(a) Note ∅ ∈ G and G is closed under unions by construction. It is also closed under
complements as Ω \Gi = ∪j 6=iGj ∈ G.

(b) Write a new sequence defined by Fi = Gi \ ∪j≤iFj and {Fi} will satisfy (a).

(c) Note that {X−1(x ∈ R)} ⊆ F is disjoint. So, by (a) and (b), F is finite if and only if
all but finitely many X−1(x ∈ R) are empty.

8. Let Bt be a 1-dimensional Wiener process.

(a) By Equation 2.2.3, since Bt ∼ N(0, t),

E(eiuBt) = exp

(
−u

2

2
V(Bt) + iuE(Bt)

)
= e−

u2

2 .

(b) Comparing power series coefficients, we deduce that

(iu)2n

(2n)!
E(B2n

t ) =
1

n!

(
−u

2t

2

)n
,

and so E(B2n
t ) = (2n)!

2nn!
tn.
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(c) Integrating by parts, compute the nth moment of Bt

E(B2k
t ) =

1√
2πt

∫
R
x2ke−

x2

2t dx

= x2k−1

√
2t

π

∫ x√
2t

ue−u
2

du

∣∣∣∣x=∞

x=−∞
−
∫
R
(2k − 1)x2k−2

√
2t

π

∫ x√
2t

ue−u
2

du

= −(2k − 1)

√
2t

π

∫
R
x2k−2

(
−1

2
e−

x2

2t

)
dx

= (2k − 1)t · 1√
2πt

∫
R
x2k−2e−

x2

2t dx

= (2k − 1)tE(B2k−2
t ).

As E(B2
t ) = t, we have that E(B2k

t ) = (2k)!tk−1

2kk!
· t = (2k)!tk

2kk!
.

(d) Check the base case, n = 2k = 2, where E(Bt)
2)] = 2!·t

2·1!
= t. If the claim is true for

n = 2k, then

E(B2k+2
t ) = (2k − 1)tE(B2k

t ) = (2k + 1)t · (2k)!tk

2kk!
=

(2k + 2)!tk+1

2k+1(k + 1)!
,

and so it is also true for n = 2(k + 1) = 2k + 2, thus completing the induction step.

9. Note that {Xt} and {Yt} have the same distributions since neither distribution has any atoms
and they agree except on a zero set ∀t ≥ 0. Yet t 7→ Xt is discontinuous while t 7→ Yt is
continuous.

10. As Bt is Brownian, Bt+h − Bt ∼ N(0, h). Since h is fixed, {Bt+h −Bt}h≥0 have the same
distributions ∀t ≥ 0.

11. As B0 =
(
B

(1)
0 , B

(2)
0 , . . . B

(n)
0

)
= 0, B(j)

0 = 0 for all j ∈ {1, . . . n}. Bt is almost surely
continuous only if its components are almost surely continuous. Each component is normally
distributed with E(Bj

t ) = 0 as E(Bt) = ~0 and Cov(B
(i)
t , B

(j)
t ) = tδij as Cov(Bt) = tI .

12. Let Wt := Bs+t − Bs where s ≥ 0 is fixed. Then W0 = Bs − Bs = 0 and Wt is almost
surely continuous as the sum of two almost surely continuous stochastic processes. Noting
Wt2 −Wt1 = Bs+t2 −Bs+t1 is independent of both Bs+t1 and Bs, deduce that Wt2 −Wt1 is
independent of Wt1 = Bs+t1 − Bs. The expected value is E(Wt) = E(Bs+t) − E(Bs) = 0
and the variance is

V(Wt) = E((Bs+t −Bs)
2)

= E(B2
s+t)− 2E(BsBs+t) + E(B2

s )

= E(B2
s+t)− 2E(Bs(Bs+t −Bs))− E(B2

s )

= E(B2
s+t)− 2E(Bs)E(Bs+t −Bs)− E(B2

s )

= (s+ t)− 0− s
= t.
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Since Wt is the sum of two normal distributions, it is also normal and Wt ∼ N(0, t).

13. Compute

P0(Bt ∈ Dρ) =

∫
|x|<ρ

1

2πt
e−
|~x|2
2t d2~x =

2π

2πt

∫ ρ

0

re−
r2

2t dr =

∫ ρ2

2t

0

e−u du = 1− e−
ρ2

2t .

14. Compute

Ex
(∫

[0,∞]

χK(Bt) dt

)
=

∫
[0,∞]

P(Bt ∈ K) dt

=

∫
[0,∞]

(∫
K

1

(2πt)n/2
e−
|~x−~y|2

2t dn~x

)
dt

≤
∫

[0,∞]

∥∥∥∥ 1

(2πt)n/2
e−
|~x−~y|2

2t

∥∥∥∥
∞
µ(K) dt

= 0

and deduce that the expected total time spent in K is 0.

15. Note that UUT = I , whence | detU | = 1 and the probability measures are identical by
change of variables. It follows that both are Brownian.

16. Let Wt = 1
c
Bc2t. We have W0 = B0 = 0 and that Wt is absolutely continuous as a scaling

of absolutely continuous Bt. Finally,

P0(Wt ∈ U) = P0(Bc2t ∈ cU)

=

∫
cU

p(c2t, 0, y) dy

=

∫
cU

1

c
p(t, 0, y/c) dy

=

∫
U

1

c
p(t, 0, y′)(cdy′)

= P0(Bt ∈ U),

and so Wt is also a Brownian motion.

17. Let Xt(·) be a continuous stochastic process.
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(a) Recall that E(Bt) = 0, E(B2
t ) = t and E(B4

t ) = 3t2. Then

E

(
(
∑
k

(
∆B2

k −∆tk
)
)2

)
= E

(
(
∑
k

(
∆B2

k −∆tk
)2

)

)
=
∑
k

(
E(∆B4

k)− 2∆tkE(∆B2
k) + ∆t2k

)
=
∑
k

(
3∆t2k − 2∆t2k + ∆t2k

)
= 2

∑
k

∆t2k.

So 〈B,B〉(2)
t (w) = t.

(b) Note that the Brownian motion has positive quadratic variation t on [0, t]. So

〈B,B〉(1)
t (w) ≥ lim

‖∆Bk‖→0+

〈B,B〉(2)
t (w)

‖∆Bk‖
=∞.



Chapter 3

Itô Integrals

1. Compute

∫ t

0

s dBs = lim
n→∞

dnte
t
−1∑

j=0

jt

n
(B (j+1)t

n

−B jt
n

)

= lim
n→∞

dnte
n

B dnte
n

− lim
n→∞

t

n

dnte
t
−1∑

j=0

B jt
n

+ lim
n→∞

t

n
(B0 −B dnte

n

)

= tBt −
∫ t

0

Bs ds.

2. Compute

∫ t

0

B2
s dBs = lim

n→∞

dnte
t
−1∑

j=0

B2
jt
n

(B (j+1)t
n

−B jt
n

)

= lim
n→∞

dnte
t
−1∑

j=0

(
1

3
B3

(j+1)t
n

− 1

3
B3

j
n

−B jt
n

(B (j+1)t
n

−B j
n
)2 − 1

3
(B (j+1)t

n

−B j
n
)3

)

=
1

3
B3
t − lim

n→∞

 dnte
t
−1∑

j=0

t

n
B jt

n
+O(t2/n)


=

1

3
B3
t −

∫ t

0

Bs ds.

3. Let {Nt} be some filtration and let {H(X)
t } be the filtration of process Xt.

(a) Compute

E(Xt |H(X)
s ) = E

(
E(Xt | Ns) |H(X)

s

)
= E(Hs |H(X)

s ) = Hs.

9
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(b) Compute

E(Xt) = E(E(Xt |H(X)
0 )) = E(X0).

(c) Let Y ∼ Bernoulli(0.5) and fix X0 = 2Y − 1. Then Xt = t · sgn(X0) satisfies
E(Xt) = E(X0) = 0, but E(Xt | Fs) = t · sgn(X0) 6= s · sgn(X0).

4. Compute

E(Bt + 4t | Fs) = Bs + 4t 6= Bs + 4s

E(B2
t | Fs) = E((Bt −Bs)

2 + 2Bs(Bt −Bs) +B2
s | Fs) = B2

s + t− s 6= B2
s

E
(
t2Bt − 2

∫ t

0

uBu du |Fs
)

= t2Bs − 2

∫ s

0

uBu du− 2

∫ t

s

uBs du = s2Bs − 2

∫ s

0

uBudu

E(B
(1)
t B

(2)
t | Fs) = E(B

(1)
t | Fs)E(B

(2)
t | Fs) = B(1)

s B(2)
s ,

and deduce that only the last two are martingales.

5. Verify E(|B2
t − t|) ≤ E(B2

t ) + t = 2t <∞ and compute

E(B2
t − t | Fs) = E((Bt −Bs)

2 + 2Bs(Bt −Bs) +B2
s − t | Fs) = B2

s + t− s− t = B2
s − s.

to deduce that Xt := B2
t − t is a martingale.

6. Verify E(|B3
t − 3tBt|) ≤

√
E(B2

t )(
√

E(B4
t ) + 3t) = (3 +

√
3)t3/2 <∞ and compute

E(B3
t − 3tBt | Fs) = E((Bt −Bs)

3 + 3Bs(Bt −Bs)
2 + 3B2

s (Bt −Bs) +B3
s − 3tBs | Fs)

= 3Bs(t− s) +B3
s − 3tBs

= B3
s − 3sBs

to deduce that Yt := B3
t − 3tBt is a martingale.

7. In this question, the formula for Itô iterated integrals is derived.

(a) Note that {0 ≤ u1 · · · ≤ un} is Borel measurable and χ0≤u1···≤un isFt-adapted. Finally
E
(∫ T

0
f(t1, . . . tn, ω)2 dt1 . . . dtn

)
≤ T n <∞.

(b) For n ∈ {1, 2, 3}

1!

∫ t

0

dBu = Bt = t1/2H1

(
Bt√
t

)
2!

∫ t

0

∫ v

0

dBu dBv = 2

∫ t

0

Bv dBv = B2
t − t = tH2

(
B2√
t

)
3!

∫ t

0

∫ w

0

∫ v

0

dBu dBv dBw = 3

∫ t

0

(B2
w − w) dBw = B3

t − 3tBt = t3/2H3

(
Bt√
t

)
.
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(c) Deduce that d(B3
t − 3tBt) = 3(B2

t − t) dBt and so Yt := B3
t − 3tBt is a martingale.

8. There exists continuous martingale Mt iff there exists Y ∈ L1 such that Mt = E(Y | Ft).

(a) Verify that E(|E(Y | Ft)|) ≤ E(E(|Y | | Ft) = E(|Y |) <∞ and

E(Mt | Fs) = E(E(Y | Ft) | Fs) = E(Y | Fs) = Ms.

(b) If Mt is a continuous martingale such that supt>0 E(|X|p) < ∞ for p ∈ (1,∞), then
∃M such that ‖Mt −M‖L1 → 0 as t→∞. So let Y = M and

lim
s→∞

∫
Ωs

|Ms − E(M | Fs)| dP = lim
s→∞

∫
Ωs

|E(Ms −M | Fs)| dP

≤ lim
s→∞

∫
Ωs

E(|Ms −M | | Fs) dP

= lim
s→∞

∫
Ωs

|Ms −M | dP

= 0.

9. Compute

∫ T

0

Bt ◦ dBt = lim
n→∞

bntc
t
−1∑

j=0

1

2
(B jt

n
+B (j+1)t

n

)(B (j+1)t
n

−B jt
n

)

= lim
n→∞

bntc
t
−1∑

j=0

B jt
n

(B (j+1)t
n

−B jt
n

) + lim
n→∞

bntc
t
−1∑

j=0

1

2
(B (j+1)t

n

−B jt
n

)2

=
1

2
B2
t −

t

2
+
t

2

=
1

2
B2
t .

10. If f(t, ω) varies smoothly in t, then the Itô and Stratonovich integrals coincide. Compute∫ T

0

f(t, ω) ◦ dBt =

∫ T

0

f(t, ω) dBt +
1

2
〈f(t, ω), Bt〉(2)

and

E(〈f(t, ω), Bt〉(2))2 ≤ E(〈Bt, Bt〉(2)E(〈f(t, ω), f(t, ω)〉(2)

≤ T lim
‖∆tk‖→0+

sup
|∆tk|

T

|∆tk|
(K|∆tk|1+ε)

= KT 2 lim
‖∆tk‖→0+

‖∆tk‖ε

= 0.
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11. Define white noise W (N)
t = max{−N,min{Wt, N}}. Since Wt and Ws are independent

and identically distributed, it follows that W (N)
t and W (N)

s are as well. If Wt is continuous,
then since |W (N)

t | ≤ N and by bounded convergence

lim
t→s

2E(W
(N)
t )2 = lim

t→s
E(|W (N)

t −W (N)
s |2) = 0.

But then Wt
a.s.
= 0, which is a contradiction.

12. Let ◦dBt denote the Stratonovich differential.

(i) Since αXt ◦ dBt = α2

2
Xtdt+ αXt dBt,

dXt = (γ +
α2

2
)Xt dt+ αXt dBt.

Since (t2 + cos(Xt)) ◦ dBt = − sin(Xt)
2

(t2 + cos(Xt)) dt+ (t2 + cos(Xt) dBt,

dXt =
sin(Xt)

2
(cos(Xt)− t2) dt+ (t2 + cos(Xt)) dBt.

(ii) Since αXt dBt = αXt ◦ dBt − α2

2
Xt dt,

dXt = (r − α2

2
)Xt dt+ αXt ◦ dBt.

Since X2
t dBt = X2

t ◦ dBt −X3
t dt,

dXt = (2e−Xt −X3
t ) dt+X2

t ◦ dBt.

13. Let Xt be continuous in mean square. Calculate

(a) lim
s→t

E[(Bt −Bs)
2] = lim

s→t
E[(Bt−s)

2] = lim
s→t

(t− s) = 0

(b) lim
s→t

E[(f(Bt)− f(Bs))
2] ≤ lim

s→t
C2E[(Bt −Bs)

2] = 0

(c) and finally by Itô isometry,

lim
n→∞

E

[(∫ T

S

(Xs − φn(s)) dBs

)2
]

= lim
n→∞

E
[∫ T

S

(Xs − φn(s))2 ds

]

= lim
n→∞

E

[∑
j

∫ t
(n+1)
j

t
(n)
j

(Xt −Xt
(n)
j

)2 dt

]
≤ (T − S) lim

n→∞
sup

1≤j≤n
E[(Xt −Xt

(n)
j

)2]

= 0.
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14. Show that h(ω) is Ft measurable if and only if it is the pointwise limit of a sum-product of
bounded continuous functions g(Btj).

(a) Assume that h is bounded since {hn(ω) := h(ω)1{|h(ω)|<n}} converges pointwise to h.

(b) Let Hn be the σ-algebra generated by B(tj) for tj = j
2n
≤ t. Then Ft = σ (∪nHn)

and so by Corollary (C.9), h = E[h|Fn] = lim
n→∞

E[h|Hn].

(c) By Doob-Dynkin, E[h|Hn](ω) = g
(
Bt1 , . . . B(tb2ntc)

)
. Since C(Rk) is dense in

L1(Rk) and by Stone-Weierstrass P (Rk) is dense in C(Rk), a limiting sequence must
exist.

15. Suppose C +
∫ T
S
f(t, ω) dBt(ω) = D +

∫ T
S
g(t, ω) dBt(ω). Then we have that

C −D = E[C −D] = E
[∫ T

S

g(t, ω) dBt(ω)−
∫ T

S

f(t, ω) dBt(ω)

]
= 0 =⇒ C = D,

and by Itô isometry,

0 = E

[(∫ T

S

g(t, ω) dBt(ω)−
∫ T

S

f(t, ω) dBt(ω)

)2
]

=

∫ T

S

E[(g(t, ω)− f(t, ω))2] ds,

whence g(t, ω) = f(t, ω) almost surely for (t, ω) ∈ [S, T ]× Ω.

16. By Jensen’s inequality, E [E[X|H]2] ≤ E [E[X2|H]] = E[X2].

17. Let G be a finite σ-algebra with partition Ω =
⊔n
i=1Gi.

(a) Note that E[X|G](ω) =
∑n

i=1 ci1Gi(ω) = ci on Gi.

(b) Show that∫
Gi

(∫
Gi
X dP

P(Gi)
dP

)
=

∫
Gi
X dP

P(Gi)

∫
Gi

1 dP =

∫
Gi

X dP, ∀i ∈ {1, . . . n}.

(c) By part (b), ci =

∫
Gi
X dP

P(Gi)
. Show for ω ∈ Gi that

E[X|G](ω) =
n∑
i=1

∫
Gi
X dP

P(Gi)
1Gi(ω)

=

∫
Gi
X dP

P(Gi)

=

∑m
k=1 akP(X = ak, ω ∈ Gi)

P(Gi)

=
m∑
k=1

akP(X = ak|Gi).



Chapter 4

The Itô Formula

1. Compute

(a) dXt = d(B2
t ) = 2Bt dBt + d[B,B]t = 2Bt dBt + dt

(b) dXt = d(2 + t+ eBt) = (1 + 1
2
eBt) dt+ eBt dBt

(c) dXt = d
(

(B
(1)
t )2 + (B

(2)
t )2

)
= 2B

(1)
t dB

(1)
t + 2B

(2)
t dB

(2)
t + 2 dt

(d) dXt = d((t0 + t, Bt)) = (dt, dBt)

(e) and finally

dXt = d((B
(1)
t +B

(2)
t +B

(3)
t , (B

(2)
t )2 −B(1)

t B
(3)
t ))

= (dB
(1)
t + dB

(2)
t + dB

(3)
t , 2B

(2)
t dB

(2)
t + dt−B(3)

t dB
(1)
t −B

(1)
t dB

(3)
t ).

2. Using Itô’s Lemma, differentiate

d

(
1

3
B3
t −

∫ t

0

Bs ds

)
= B2

t dBt +Bt d[B,B]t −Bt dt = B2
t dBt

and deduce that ∫ t

0

B2
s dBs =

1

3
B3
t −

∫ t

0

Bs ds.

3. Let Xt and Yt be Itô processes. Then, letting f(t, x, y) = xy and by Itô’s formula

d(XtYt) = ft(t,Xt, Yt) dt+ fx(t,Xt, Yt) dXt + fy(t,Xt, Yt) dYt

+
1

2
fxx(t,Xt, Yt) d[X,X]t + fxy(t,Xt, Yt) d[X, Y ]t +

1

2
fyy(t,Xt, Yt) d[Y, Y ]t

= Yt dXt +Xt dYt + d[X, Y ]t

14
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and deduce the integration of parts formula∫ t

0

Xs dYs =

∫ t

0

(d(XsYs)− Ys dXs − d[X, Y ]s)

= XtYt −X0Y0 −
∫ t

0

Ys dXs −
∫ t

0

d[X, Y ]s.

4. Let Zt = exp
(∫ t

0
〈θ(s, ω), dBs〉 − 1

2
|θ(s, ω)|2 ds

)
.

(a) Then, letting Zt = eYt and by Itô’s formula,

dZt = eYt dYt +
1

2
eYt d[Y, Y ]t

= Zt

(
〈θ(t, ω), dBt〉 −

1

2
|θ(t, ω)|2 dt+

1

2

n∑
i,j=1

[
θi(s, ω) dB(i), θj(s, ω) dB(j)

]
s

)
= Zt〈θ(t, ω), dBt〉.

(b) It suffices to check that

[E(|Zt|)]2 =

[
E
(∣∣∣∣∫ t

0

dZs

∣∣∣∣)]2

=

[
E
(∣∣∣∣∫ t

0

Zs〈θ(s, ω), dBs〉
∣∣∣∣)]2

≤ E

(∫ t

0

n∑
i=1

|Zsθi(s, ω)| dB(i)
s

)2

= E

(
n∑

i,j=1

∫ t

0

|Zsθi(s, ω)||Zsθj(s, ω)| d[B(i), B(j)]s

)

=
n∑
i=1

E
(∫ t

0

|Zsθi(s, ω)|2 ds
)

<∞.

5. Let βk(t) = E(Bk
t ). Then, by Itô’s lemma,

dBk
t = kBk−1

t dBt +
1

2
k(k − 1)Bk−2

t dt

and so

βk(t) = E(Bk
t ) = E

(∫ t

0

dBk
s

)
=

∫ t

0

E
(

1

2
k(k − 1)Bk−2

t

)
ds =

1

2
k(k − 1)

∫ t

0

βk−2(s) ds.

Deduce that β4(t) = 6
∫ t

0
β2(s) ds = 6 · t2

2
= 3t2 and β6(t) = 15

∫ t
0

3s2 ds = 15t3.
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6. Define geometric Brownian motions Xt = ect+αBt and Yt = ect+
∑n
j=1 αjB

(j)
t .

(a) Calculate

dXt = cect+αBt dt+ αect+αBt dBt +
1

2
α2ect+αBt d[B,B]t

= Xt

(
(c+

α2

2
) dt+ α dBt

)
.

(b) Calculate

dYt = Yt

(
c dt+

n∑
j=1

αj dB
(j)
t +

1

2

n∑
i,j=1

αiαjd[B(i), B(j)]t

)

= Yt

(
(c+

1

2

n∑
j=1

α2
i ) dt+

n∑
j=1

αj dB
(j)
t

)
.

7. Let Xt solve dXt = v(t, ω) dBt.

(a) Note that Bt is a martingale while B2
t is not.

(b) Define Mt = X2
t −

∫ t
0
v(s, ω)2 ds. Then

dMt = 2Xt dXt + [dX, dX]t − v(t, ω)2, dt

= 2Xtv(t, ω) dBt +
(
v(t, ω)2 − v(t, ω)2

)
dt

= 2Xtv(t, ω) dBt.

Moreover,

E(|Mt|) ≤ E(X2
t ) + E

(∫ t

0

v(s, ω)2 ds

)
= E

(∫ t

0

v(s, ω) dBs

)2

+ E
(∫ t

0

v(s, ω)2 ds

)
= 2E

(∫ t

0

v(s, ω)2 ds

)
<∞.

8. Let f(x(1), . . . x(n)) be a function of class C2.

(a) By Itô’s lemma,

d(f(Bt)) =
n∑
i=1

∂if(Bt) dB
(i)
t +

1

2

n∑
i,j=1

∂2
ijf(Bt) d[B(i), B(j)]t

= 〈∇f(Bt), dBt〉+
1

2
∆f(Bt) dt
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and so

f(Bt)− f(B0) =

∫ t

0

d(f(Bs)) =

∫ t

0

〈∇f(Bs), dBs〉+
1

2

∫ t

0

∆f(Bs) ds.

(b) Assume that g is of class C1 everywhere, as well as C2 and uniformly bounded outside
of finitely many points with |g′′(z)| ≤M for z /∈ {z1, . . . zk}. Then the set of functions
{f} of class C2 uniformly bounded with |f ′′(z)| ≤M are Ck-dense. So we can extract
a sequence {fk} such that fk ⇒ g, f ′k ⇒ g′ as well as f ′′k → g′′ and |f ′′k | ≤ M on
R \ {z1, . . . zk}. So

lim
k→∞

∣∣∣∣(fk − g)(Bt) + (fk − g)(0) +

∫ t

0

(f ′k − g′) dBs +
1

2

∫ t

0

(f ′′k − g′′) ds
∣∣∣∣

≤ lim
k→∞
|(fk − g)(Bt)|+ |(fk − g)(0)|+ t‖f ′k − g′‖∞ +

1

2

∫ t

0

|f ′′k − g′′| ds

= 0,

where the last term vanishes by bounded convergence.

9. Clearly ∫ t

0

v
∂gn
∂x

(s,Xs)χs≤τn dBs =

∫ t∧τn

0

v
∂g

∂x
(s,Xs) dBs

and the result follows by Itô’s lemma where dXt = u dt + v dBt. Since E(|Xt|) < ∞, it
follows that lim

n→∞
P(τn > t) = lim

n→∞
P(Xt < n) = 1 and so the identity holds almost surely.

10. (Tanaka) In this problem, Tanaka’s formula for Brownian motion is derived.

(a) Substitute u ≡ 0 and v ≡ 1 here. Then as g′′ε (x) = 1
ε
χ|x|<ε(x)

1

2

∫ t

0

d2gε
dx2

(Bs) ds =
1

2ε

∫ t

0

χ|Bs|<ε ds =
1

2ε
|{s ∈ [0, t] | |Bs| < ε}|.

(b) Differentiate to get ∫ t

0

g′ε(Bs)χ|Bs|<ε dBs =

∫ t

0

Bs

ε
χ|Bs|<ε dBs,

and apply Itô isometry to get

lim
ε→0+

E
(∫ t

0

Bs

ε
χ|Bs|<ε dBs

)2

= lim
ε→0+

E
(∫ t

0

B2
s

ε2
χ|Bs|<ε ds

)
≤ lim

ε→0+

∫ t

0

P(|Bs| < ε) ds = 0.
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(c) As ε→ 0 for g(x) = x,

|Bt| = |B0|+ lim
ε→0+

∫ t

0

sgn(Bs)χ|Bs|≥ε ds+ lim
ε→0+

1

2ε
|{s ∈ [0, t] | |Bs| < ε}|

= |B0|+
∫ t

0

sgn(Bs) ds+ Lt.

11. Let Xt = et/2 cos(Bt), Yt = et/2 sin(Bt) and Zt = (Bt + t)e−Bt−t/2. Compute

(a) dXt = 1
2
et/2 cos(Bt) dt−et/2 sin(Bt) dBt+

1
2
(−et/2 cos(Bt)) d[B,B]t = −et/2 sin(Bt) dBt

(b) dYt = 1
2
et/2 sin(Bt) dt+e

t/2 cos(Bt) dBt+
1
2
(−et/2 sin(Bt)) d[B,B]t = et/2 cos(Bt) dBt

(c) and finally

dZt = e−Bt−t/2d(Bt + t) + (Bt + t)d(e−Bt−t/2) + d[Bt + t, e−Bt−t/2]

= e−Bt−t/2(dt+ dBt)−
1

2
Xt dt−Xt dBt − e−Bt−t/2 dt+

1

2
(Bt + t)e−Bt−t/2 dt

= e−Bt−t/2(1− t−Bt) dBt.

12. The given condition implies E(|Xt|) <∞. So Xt is a martingale if and only if E(Xt | Fs) =
Xs. Then

E(

∫ t

s

u(r, ω) dr | Fs) = E(Xt −Xs | Fs) = 0.

Moreover by dominated convergence

E(u(t, ω) dr | Fs) = E(
d

ds

∫ t

s

u(r, ω) dr | Fs) = 0.

Then

u(t, ω) = E(u(t, ω) | Ft) = lim
s→t−

E(u(t, ω) | Fs) = 0.

13. Let dXt = u(t, ω) dt + dBt where u(t, ω) ∈ V([0, T ]). Then Yt = XtMt is a martingale,
where

Mt = exp

(
−
∫ t

0

u(r, ω) dBr −
1

2

∫ t

0

u2(r, ω) dr

)
since E(|Mt|) <∞ (see question 4b), E(|Xt|) ≤

√
t

(√∫ t
0
u2(r, ω) dr + 1

)
<∞ and

d(XtMt) = MtdXt +XtdMt + d[X,M ]t

= Mt(u(t, ω) dt+ dBt) +MtXt(−u(t, ω) dBt −
1

2
u2(t, ω) dt)

−Mtu(t, ω) dt+
1

2
MtXtu

2(t, ω) dt

= Mt(1− u(t, ω)Xt) dBt.
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14. In this problem, the martingale representation of stochastic processes is explicitly shown.

(a) Compute dFt = dBt, E(FT ) = 0 and

dFt − dE(Ft) = 1 dBt =⇒ f(t, ω) = 1.

(b) Compute dFt = Bt dt, E(FT ) = 0 and

dFt − dE(Ft) = Bt dt = d(TBT )− t dBt = (T − t) dBt =⇒ f(t, ω) = T − t.

(c) Compute dFt = 2Bt dBt + dt, E(FT ) = T and

dFt − dE(Ft) = 2Bt dBt + 1 dt− 1 dt = 2Bt dBt =⇒ f(t, ω) = 2Bt.

(d) Compute dFt = 3B2
t dBt + 3Bt dt, E(FT ) = 0 and

dFt − dE(Ft) = 3B2
t dBt + 3Bt dt

= 3B2
t + 3(T − t)) dBs =⇒ f(t, ω) = 3B2

t + 3T − 3t.

(e) Recall that eBt−t/2 is a martingale and compute

d(eBt−t/2) = eBt−t/2 dBt.

Deduce that

eBT = eT/2
(

1 +

∫ T

0

eBt−t/2 dBt

)
=⇒ f(t, ω) = eBt+(T−t)/2.

(f) Find martingale et/2 sin(Bt) and compute

d(et/2 sin(Bt)) = et/2 cos(Bt) dBt

Deduce that

sin(BT ) = e−T/2
∫ T

0

et/2 cos(Bt) dBt =⇒ f(t, ω) = e−(T−t)/2 cos(Bt).

15. Define Xt = (x1/3 + 1
3
Bt)

3. Then

dXt = 3X
2/3
t d(x1/3 +

1

3
Bt) + 3X

1/3
t d

[
x1/3 +

1

3
Bt, x

1/3 +
1

3
Bt

]
= X

2/3
t dBt +

1

3
X

1/3
t dt.



Chapter 5

Stochastic Differential Equations

1. Compute

(a) dXt = d(eBt) = eBt dBt + 1
2

Bt d[B,B]t = 1
2
Xt dt+Xt dBt

(b) dXt = d
(
Bt
1+t

)
= 1

1+t
dBt − Bt

(1+t)2
dt = 1

1+t
dBt − 1

1+t
Xt dt

(c) dXt = d(sin(Bt)) = cos(Bt) dBt − 1
2

sin(Bt) dt = cos(Bt) dBt − 1
2
Xt dt

(d) dX(1)
t = dt and

dX
(2)
t = d(etBt) = et dBt + etBt dt = et dBt +X

(2)
t dt.

(e) and finally differentials

d(cosh(Bt)) = sinh(Bt) dBt +
1

2
cosh(Bt) dt

and

d(sinh(Bt)) = cosh(Bt) dBt +
1

2
sinh(Bt) dt

to deduce that (
dX

(1)
t

dX
(2)
t

)
=

1

2

(
X

(1)
t

X
(2)
t

)
dt+

(
X

(2)
t

X
(1)
t

)
dBt.

2. Let X(1)
t = a cos(Bt) and X(2)

t = b sin(Bt). Then

dX
(1)
t = −a sin(Bt) dBt −

a

2
cos(Bt) dt = −1

2
X

(1)
t dt− a

b
X

(2)
t dBt

and

dX
(2)
t = b cos(Bt) dBt −

b

2
sin(Bt) dt = −1

2
X

(2)
t dt+

b

a
X

(1)
t dBt.

20
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3. The solution is given by

Xt = X0 exp

(
(r − 1

2

n∑
k=1

α2
k)t+

n∑
k=1

αk dBk

)
.

4. In this problem, solutions to stochastic differential equations are found.

(a) The solution to dX(1)
t = dt+ dB

(1)
t is X(1)

t = X
(1)
0 + t+B

(1)
t and

dX
(2)
t = X

(1)
t dB

(2)
t = (X

(1)
0 + t+B

(1)
t ) dB

(2)
t

is

X
(2)
t = X

(2)
0 +X

(1)
0 B

(2)
t +

∫ t

0

(s+B(1)
s ) dB(2)

s .

(b) Using integrating factors, solve dXt = Xt dt+ dBt for

e−tXt −X0 =

∫ t

0

e−s dBs

and deduce that the solution Xt is

Xt = etX0 +

∫ t

0

et−s dBs.

(c) Using integrating factors, solve dXt = −Xt dt+ e−tdBt for

etXt −X0 =

∫ t

0

dBs

and deduce that the solution Xt is

Xt = e−t(X0 +Bt).

5. The Langevin equation is given by

dXt − µXt dt = σdBt.

(a) Using integrating factors, solve for

e−µtXt −X0 =

∫ t

0

e−µsσ dBs

and deduce that the solution Xt is

Xt = eµtX0 + σ

∫ t

0

eµ(t−s) dBs.
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(b) The expected value of Xt is

E(Xt) = eµtX0

and, by Itô isometry, the variance of Xt is

V(Xt) = E

(
σ2

(∫ t

0

eµ(t−s) dBs

)2
)

= E
(
σ2

∫ t

0

e2µ(t−s)ds

)
=
σ2

2µ
(e2µt − 1).

6. Suppose Yt is given by

dYt = r dt+ αYt dBt.

Using integrating factors, solve for

d(e−αBtYt) = e−αBtYt

(
r − α2

2

)
dt

and

e−αBt+
α2

2
tYt − Y0 =

∫ t

0

re−αBs+
α2

2
s ds.

Deduce that

Yt = eαBt−
α2

2
tY0 + r

∫ t

0

eα(Bt−Bs)−α
2

2
(t−s) ds.

7. The Ornstein-Uhlenbeck process is given by

dXt = (m−Xt) dt+ σ dBt.

(a) Using integrating factors, solve for

etXt −X0 =

∫ t

0

esmds+

∫ t

0

esσ dBs

and deduce that the solution Xt is

Xt = e−tX0 +m(1− e−t) + σ

∫ t

0

es−t dBs.

(b) The expected value of Xt is

E(Xt) = m+ e−t(X0 −m)

and the variance of Xt is

V(Xt) = E

(
σ2

(∫ t

0

es−t dBs

)2
)

= E
(
σ2

∫ t

0

e2s−2t ds

)
=
σ2

2
(1− e−2t).
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8. Consider the stochastic differential equation(
dX

(1)
t

dX
(2)
t

)
=

(
0 1
−1 0

)(
X

(1)
t

X
(2)
t

)
dt+

(
α dB

(1)
t

β dB
(2)
t

)
.

By d’Alembert’s formula, it has a solution of the form

Xt = eAtX0 +

∫ t

0

eA(t−s)g(s) ds,

where

eAt =

(
1 1
i −1

)(
eit 0
0 e−it

)(
1 1
i −1

)−1

=

(
cos(t) sin(t)
− sin(t) cos(t)

)
.

Conclude that the solutions are

X
(1)
t = X

(1)
0 cos(t) +X

(2)
0 sin(t) + α

∫ t

0

cos(t− s) dB(1)
s + β

∫ t

0

sin(t− s) dB(2)
s

and

X
(2)
t = −X(1)

0 sin(t) +X
(2)
0 cos(t)− α

∫ t

0

sin(t− s) dB(1)
s + β

∫ t

0

cos(t− s) dB(2)
s .

9. Let dXt = ln(1 +X2
t ) dt+ χ{Xt>0}Xt dBt. It suffices to check that

|b(t, x)|+ |σ(t, x)| = ln(1 + x2) + χ{x>0}|x| ≤
2

e
(|x|+ 1) + |x| ≤ 2(|x|+ 1),

E(|X0|2) = α2 <∞, and

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ | ln(x2)− ln(y2)|+ |x− y| ≤ 3|x− y|.

Hence, by Theorem 5.2.1, there is a unique strong solution to the stochastic differential
equation.

10. Calculate

E(X2
t ) = E

(
Z +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs

)2

≤ 3

(
E(Z2) + E

(∫ t

0

b(s,Xs) ds

)2

+ E
(∫ t

0

σ(s,Xs) dBs

)2
)

≤ 3

(
E(Z2) + TE

(∫ t

0

b(s,Xs)
2 ds

)
+ E

(∫ t

0

σ(s,Xs)
2 ds

))
≤ 3E(Z2) + 6C2

(
T +

∫ t

0

E(|Xs|2) ds

)
(T + 1)

= (3E(Z2) + 6C2T (T + 1)) + 6C2(T + 1)

∫ t

0

E(|Xs|2) ds.

and apply Gronwall to derive the result.
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11. Consider the stochastic process

Yt = a(1− t) + bt+ (1− t)
∫ t

0

dBs

1− s
.

Then Y0 = a and, for t ∈ [0, 1), Yt solves

dYt = (b− a) dt−
∫ t

0

dBs

1− s
dt+ (1− t) dBt

1− t

=
1

1− t

(
(b− a)(1− t)− (1− t)

∫ t

0

dBs

1− s

)
dt+ dBt

=
1

1− t

(
b− a(1− t)− bt− (1− t)

∫ t

0

dBs

1− s

)
dt+ dBt

=
b− Yt
1− t

dt+ dBt.

Finally by Itô isometry E
(

(1− t)2
∫ t

0
dBs
1−s

)2

= (1 − t)2
∫ t

0
1

(1−s)2 ds = (1 − t)t → 0 as

t→ 1− and so limit lim
t→1−

Yt
a.s.
= b.

12. Let y′′(t) + (1 + εWt)y(t) = 0 where Wt = dBt
dt

is 1-dimensional white noise.

(a) Rewrite (
dyt
dẏt

)
=

(
0 1
−1 0

)(
yt
ẏt

)
dt+

(
0 0
−ε 0

)(
yt
ẏt

)
dBt.

(b) Check that, if y(t) = y(0) + y′(0)t+
∫ t

0
(r − t)y(r) dr +

∫ t
0
ε(r − t)y(r) dBr, then

y′(t) = y′(0)−
∫ t

0

y(r) dr −
∫ t

0

εy(r) dBr = y′(0)−
∫ t

0

y(r)(1 + εWr) dr

and y′′(t) = −(1 + εWr) dr.

13. Let x′′t + a0x
′
t + w2xt = (T0 − α0x

′
t)ηWt where Wt is 1-dimensional white noise. Then(

dxt
dẋt

)
=

(
0 1
−w2 −a0

)(
xt
ẋt

)
dt+

(
0 0
0 −α0η

)(
xt
ẋt

)
dBt +

(
0
T0η

)
dBt

and by d’Alembert’s formula the solution is

Xt = eAtX0 +

∫ t

0

eA(t−s)KXs dBs +

∫ t

0

eA(t−s)M dBs.
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The eigenvalues ofA satisfy λ2 +a0λ+w2 = 0 and are λ± = −a0
2
±
√
w2 − a20

4
i =: −λ±ξi.

Then take the exponential of matrix A

eAt =

(
1 1
λ+ λ−

)(
eλ+t 0

0 eλ−t

)(
1 1
λ+ λ−

)−1

=
1

λ− − λ+

(
λ−e

λ+t − λ+e
λ−t eλ−t − eλ+t

−λ−λ+(eλ−t − eλ+t) λ−e
λ−t − λ+e

λ+t

)
= − 1

2ξi

(
e−λt(−λ · 2i sin(ξt)− ξi · 2 cos(ξt) e−λt(−2i sin(ξt))

−w2e−λt(−2i sin(ξt)) e−λt(−λ · 2i sin(ξt)− ξi · 2 cos(ξt) + 2λ · 2i sin(ξt))

)
=
e−λt

ξ

(
λ sin(ξt) + ξ cos(ξt) sin(ξt)
−w2 sin(ξt) λ sin(ξt) + ξ cos(ξt)− 2λ sin(ξt)

)
=
e−λt

ξ
((λ sin(ξt) + ξ cos(ξt))I + A sin(ξt)) .

Next, letting ys = ẋs, gt = e−λt sin(ξt)
ξ

and ht = e−λt ξ cos(ξt)−λ sin(ξt)
ξ

, compute

eA(t−s)KXs = −α0ηe
−λ(t−s)

ξ

(
0 sin(ξ(t− s))
0 ξ cos(ξ(t− s))− λ sin(ξ(t− s))

)(
xs
ẋs

)
=

(
−α0ηysgt−s
−α0ηysht−s

)
and

eA(t−s)M =
T0ηe

−λ(t−s)

ξ

(
sin(ξ(t− s))

ξ cos(ξ(t− s))− λ sin(ξ(t− s))

)
=

(
ηT0gt−s
ηT0ht−s

)
.

It follows that

xt = η

∫ t

0

(T0 − α0ys)gt−s dBs

and

yt = η

∫ t

0

(T0 − α0ys)ht−s dBs.

14. Letting Zt = F (Bt), where Bt = B
(1)
t + iB

(2)
t , calculate

dZt = Fx(Bt) dB
(1)
t + Fy(Bt) dB

(2)
t

+
1

2
Fxx(Bt) d[B(1), B(1)]t + Fxy(Bt) d[B(1), B(2)]t + Fyy(Bt) d[B(2), B(2)]t

= (ux + ivx) dB
(1)
t + (uy + ivy) dB

(2)
t +

1

2
(uxx + ivxx + uyy + ivyy) dt

= 〈F ′(Bt), dBt〉+
1

2
(vxy − iuxy + uyy + ivyy) dt

= 〈F ′(Bt), dBt〉+
1

2
(−uyy − ivyy + uyy + ivyy) dt

= 〈F ′(Bt), dBt〉.
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15. Consider the non-linear stochastic differential equation

dXt = rXt(K −Xt) dt+ βXt dBt, X0 = x > 0.

Comparing to the deterministic Bernoulli equation, do a substitution Yt = X−1
t , then

dYt = −rYt(K −Xt) dt− βYt dBt + β2Yt dt

= (−rK + β2)Yt dt− βYt dBt + r dt.

Next do a new change of variables

Zt = Yte
(rK−β2)t

and calculate

dZt = −βZt dBt + re(rk−β2)t dt

=⇒ Zt = e−βBt
(
x−1 + r

∫ t

0

e(rk−β2)s+βBs ds

)
.

Conclude that

Xt =
e(rk−β2)t

Zt
=

e(rk−β2)t+βBt

x−1 + r
∫ t

0
e(rk−β2)s+βBs ds

.

16. Consider the non-linear stochastic differential equation

dXt = f(t,Xt) dt+ c(t)Xt dBt, X0 = x.

(a) Let Ft(ω) = exp
(
−
∫ t

0
c(s) dBs + 1

2

∫ t
0
c(s)2 ds

)
. Then calculate

d(FtXt) = Xt dFt + Ft dXt + d[Ft, Xt]

= Xt

[
Ft

(
−c(t) dBt −

1

2
c(t)2 dt− 1

2
c(t)2 dt

)]
+ [f(t,Xt)Ft dt+ c(t)XtFt dBt]− c(t)2FtXt dt

= f(t,Xt)Ft dt.

(b) Defining Yt = FtXt, deduce that

dYt
dt

= Ft(ω)f(t, F−1
t (ω)Yt(ω))

(c) Consider dXt = X−1
t + αXt dBt, X0 = x > 0. Then

dYt
dt

= e−2αBt+α2tY −1
t ,
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which implies

Yt =

√
Y 2

0 + 2

∫ t

0

e−2αBt+α2s ds

and

Xt = eαBt−
α2

2
t

√
x2 + 2

∫ t

0

e−2αBt+α2s ds.

(d) Consider dXt = Xγ
t dt+ αXt dBt, X0 = x > 0. Then

dYt
dt

= e−(1−γ)Bt+(1−γ)α
2

2
tY γ
t ,

which implies

Yt =

(
Y 1−γ

0 + (1− γ)

∫ t

0

e−(1−γ)Bs+(1−γ)α
2

2
s ds

) 1
1−γ

and

Xt = eαBt−
α2

2
t

(
x1−γ + (1− γ)

∫ t

0

e−(1−γ)Bs+(1−γ)α
2

2
s ds

) 1
1−γ

.

17. Let v ≥ 0 satisfy v(t) ≤ C + A
∫ t

0
v(s) ds and consider quantity w(t) =

∫ t
0
v(s) ds. Then

w′(t) = v(t) ≤ C + A

∫ t

0

v(s) ds = C + Aw(t).

Then for f(t) = w(t)e−At, calculate

f ′(t) = e−At (w′(t)− Aw(t)) ≤ Ce−At

and

w(t)e−At ≤
∫ t

0

Ce−As ds =
C

A
(1− e−At)

=⇒ w(t) ≤ C

A
(eAt − 1).

Deduce that

v(t) ≤ C + Aw(t) ≤ CeAt.
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