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Chapter 1

Introduction

This is a solutions manual for Stochastic Differential Equations by Bernt @ksendal. This is a
working document last updated May 3, 2021. Progress to date:

e Chapter 2: Problems #1-17

Chapter 3: Problems #1-17

Chapter 4: Problems #1-15

Chapter 5: Problems #1-17

Chapters 6-12: none so far



Chapter 2

Some Mathematical Preliminaries

1. Suppose X : 2 — R is a function that assumes countably many values {a;} in R.

(a) Note that X is a random variable if and only if it is measurable. If X : @ — R is
measurable, then U = X (R \ a;) € F and thus X '(a;) = Q\ U € F, Vk. On the
other hand, if X~!(a;,) € F, Vk, then Borel set V C R, X 1 (V) =, ., X '(ax) €
F and thus X is measurable.

(b) Compute E(|X|) = [ |z| dPx = fUi"zl{ak} 2| dPx =3 e |ax|P(X = ag).

(c) IfE(]X|) < oo, then the series

E(X) = / zdPx = / rdPy =Y aP(X = ay)
R Upe {ax}

k=1

ap€V

is absolutely convergent and therefore converges.
(d) If f is measurable and | f| is bounded by M, then

E(|f(X)|):/R|f(x)|d]P>Xg/RMdPX:M/RdIPX:M<oo.

Hence,
E(f(X)) = f(x)dPyx = z)dPyxy = E ap)P(X = ag

is absolutely convergent and therefore converges.
2. Let F(z) = P(X < x) be the distribution function of X.

(a) By monotonicity of P, 0 = P()) < P(X < z) < P(R) = 1. Now, by the Monotone
Convergence Theorem,

lim F(n) = im | X(—oon dP(z) = / dP(z) = 1.
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Similarly, for G(n) := 1 — F(—n), we have

lim G(n) = lim [ (1 = X(—00,—n))dPx(x) = 1.

n—oo n—oo R

Moreover, I’ is increasing by monotonicity of P and finally, again by Monotone Con-
vergence,

lim 1— Flz+h)+ F(z) = lm [ (1 - vuin) dB(z) = / dP(z) = 1

h—0+ h—0+ R R
and so lim+ F(xz+ h) = F(x),i.e. F is right-continuous.
h—0

(b) Compute the expectation

and 5o p(u) = X[0,00) p(\\g) where p(u) is the density of B;.

3. Since H; is a o-algebra, ) € H;, Vi € I. So) € H = MierH;. If {Uj}jeN C H, then
{Uj};en © Hiforeachi € I'and so Q\ U; € H; and UjeaU; € H,;, Vi € 1. Conclude that
Q\U; € Hand Ujc4U; € H and H = N;erH,; is also a o-algebra.

4. Let X : 2 — R be arandom variable with E(| X|P) < oc.

(@) Let A={w e Q||X]| >\ > 0} and compute
E(|X|?) :/ X dP > / X P dP > )\f"/ dP = X'P(|X| > )).
0 A A

(b) By Chebychev, P(|X| > \) =P(el¥l > &*) < LE(eF X)) = Me*.
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5. Since the measures are o-finite, f(z,y) = zy is Px ® Py measurable and E(|XY|) < oo,
apply Fubini-Tonelli and compute

E(XY):/ zy dPxy (z,y)

R2

— /R oy dPx (x) @ dPy (y)

_ /Ry (/RdeX(ZE)> dPy (y)

E(X) / y dPy (y)
— E(X)E(Y).

6. (Borel-Cantelli) Let {Ay};>, C F and suppose > -, P(A;) < co. Then

PN Uiy, Ax) < lim sup P(Ay) =0

m—0o0 kZm
by dominated convergence.
7. Let Q2 = |_|:-L:1 Gl

(a) Note ) € G and G is closed under unions by construction. It is also closed under
complements as Q \ G; = U;,G; € G.
(b) Write a new sequence defined by F; = G, \ U;<;F; and {F;} will satisfy (a).

(c) Note that {X~!(x € R)} C F is disjoint. So, by (a) and (b), F is finite if and only if
all but finitely many X ~!(z € R) are empty.

8. Let B; be a 1-dimensional Wiener process.

(a) By Equation 2.2.3, since B; ~ N (0, ),

w2

E(e™B) = exp (—U;V(Bt) + z’uE(Bt)) —e %

(b) Comparing power series coefficients, we deduce that

- ()

and so E(B2") = &,

27!
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10.

11.

12.

(c) Integrating by parts, compute the n** moment of B,

1 o2
E(B*) = \/ﬁ/}gx%e_% dx
= 2t [Var
—/(2k—1)x2k_2 —/ " e du
z=—00 JR m

:ac%_l\/%/faS ue™™ du
—(2k=1)4/— / <—e 2t)d$

— (2k — 1)t

o
= (2k — ItE(B2).

AsE(B?) = t, we have that E(B2) = G4 Gt

2FE] 2F ]
(d) Check the base case, n = 2k = 2, where E(B;)?)] = 2L = ¢. If the claim is true for
n = 2k, then

(2k)" (2K 4 2)h
bkl k(4 1)
and so it is also true for n = 2(k + 1) = 2k + 2, thus completing the induction step.

E(B**2) = (2k — 1)tE(BX*) = (2k + 1)t -

. Note that { X;} and {Y;} have the same distributions since neither distribution has any atoms

and they agree except on a zero set Vi > (0. Yet ¢t — X, is discontinuous while ¢ — Y; is
continuous.

As By is Brownian, By, — B; ~ N(0, h). Since h is fixed, { Byyn — Bi},>, have the same
distributions V¢ > 0.

As By = (Bg”, B?, ... Bg")) = 0,BY = 0forall j € {1,...n}. B, is almost surely
continuous only if its components are almost surely continuous. Each component is normally
distributed with E(B!) = 0 as E(B,) = 0 and Cov(B\"”, BY)) = 6, as Cov(B,) = t1I.

Let W; := By,y — Bs; where s > 0 is fixed. Then W, = By, — B; = 0 and W, is almost
surely continuous as the sum of two almost surely continuous stochastic processes. Noting
Wi, — Wy, = Bgy1, — Bsiy, 18 independent of both By, and B, deduce that W;, — W, is
independent of W;, = B, — Bs. The expected value is E(W;) = E(Bs;:) — E(B;s) =0
and the variance is

V(W4) = E((Buse — Bs)?)
= E(B ) - 2E(BS s+t> + E<BQ)
= E(B§+t) - 2E(Bs( s+t B )) - E(BS)
= E(BEH) — 2E(B,)E(Bys; — B,) — E(B?)

=(s+1t)—0—
t.
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Since W} is the sum of two normal distributions, it is also normal and W; ~ N (0, t).

13. Compute
1 w2, 2r [P 2 % o2
Py(B, € D,) = / —e 2w dT=— [ re2dr= / e tdu=1—e 2.

14. Compute

and deduce that the expected total time spent in K is 0.

15. Note that UUT = I, whence |det U| = 1 and the probability measures are identical by
change of variables. It follows that both are Brownian.

16. Let W, = %Bczt. We have W, = By = 0 and that W, is absolutely continuous as a scaling
of absolutely continuous B;. Finally,

Po(Wt c U) = ]PJ()(Bc2t € CU)
= / p(¢*t,0,y) dy
cU

1
= / Ep(t, 0,y/c)dy
cU

1
= [ p0.0)cdy)
U C
=Py(B; € U),
and so W, is also a Brownian motion.

17. Let X;(-) be a continuous stochastic process.
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(a) Recall that E(B;) = 0, E(B?) =t and E(B}') = 3t2. Then

(5 @t -an)7) -2 (3 (a0t - a0

k k
—Z (AB}) — 2A4,E(AB}) + At?)

= Z (BAL2 — 2At7 + At?)
k
=2 A
k

So (B, B)® (w) = t.
(b) Note that the Brownian motion has positive quadratic variation ¢ on [0, t]. So

(B,B)?(w) _

B, B D () > im
< )i )_||ABk||—>O+ |ABy||
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Ito Integrals

1. Compute
Intl 4
/t dB, = li tZﬁ(B Bit)
sdBs; = lim —(Bgsnt — Byt
0 n—oo < n (Jt:il)t Jn
7=0
Intl 4
t t S t
—tim ™ i © > By + lim —(By — Bpun)
n—oo N n n—oo 1 o n n—oo N, n
]:
t
= tBt —/ Bs ds.
0
2. Compute
t [
/ B2dB, = lim Y B (B — By)
0 n—o0 ]:0 n n n
[t
: t L3 L3 o 1 3
= lim Z ganl)t — gB% — Bu(Busy — By)* - g(Bu:l)t ~ B;)

nt 1

1 : t
= ng — lim ]Z; EB% + O(t*/n)

n—o0

1 t
=_-B— / B, ds.
3 0

3. Let {N;} be some filtration and let {HiX) } be the filtration of process X;.

(a) Compute
E(X, |HY) =E (E(X, |N;) | 7)) = E(H, | HY)) = H,.

9
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(b) Compute
E(X,) = E(E(X, | H")) = E(Xo).

(c) Let Y ~ Bernoulli(0.5) and fix Xo = 2Y — 1. Then X; = ¢ - sgn(Xy) satisfies
E(X;) =E(Xo) =0, but E(X; | Fs) =t - sgn(Xop) # s - sgn(Xo).

4. Compute

E(B, + 4t | F,) = B, + 4t # B, + 4s

t s t s
E (tZBt — 2/ uBudu]Fs> =t’B, — 2/ uB,, du — 2/ uBsdu = s*By — 2/ uB,du
0 0 s 0
(BB | F) = E(B | FJE(B | F.) = BUBY,
and deduce that only the last two are martingales.
5. Verify E(|B? — t|) < E(B?) +t = 2t < oo and compute
E(B? —t|F,) =E((B; — Bs)* +2By(B; — B,) + B> —t|F,) =B+t —s—t= B> —s.

to deduce that X, := B? — ¢ is a martingale.

6. Verify E(|B} — 3tB;|) < /E(B?)(v/E(B}) + 3t) = (3 + v/3)t*/? < 0o and compute

E(B? - 3tB, | F.,) = E((B, — B,)* + 3B4(B, — B,)*> + 3B*(B, — B,) + B? — 3tB, | F,)
= 3B,(t — s) + B2 - 3tB,
= B? — 3sB,

to deduce that Y; := B} — 3t B; is a martingale.

7. In this question, the formula for It6 iterated integrals is derived.

(a) Note that {0 < uy - -- < w,} is Borel measurable and x o<y, ...<u, 18 Fr-adapted. Finally
E (fOTf(tl,...tn,w)2 dt; ..dtn> <T" < 0.

(b) Forn € {1,2,3}

t B
1!/ dB, _Bt—t1/2H< t)
0 \/E
B
2!// dB, dB, _Q/BdB =B — t—tHQ(—Q)
Vit
B
3'// / dB, dB, dB, _3/(3 —w)dB, = B} — 3tB, = t*/*H, (\/%)
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(c) Deduce that d(B} — 3tB;) = 3(B? — t) dB; and so Y; := B} — 3tB; is a martingale.
8. There exists continuous martingale M iff there exists Y € L' such that M; = E(Y | F).
(a) Verify that E(|E(Y | 7)|) < E(E(]Y|| F) = E(]Y|) < oo and
E(M, | Fy) = EEY | F) [ F) = E(Y [ F) = M

(b) If M, is a continuous martingale such that sup,., E(|X|?) < oo for p € (1,00), then
M such that ||M; — M||;2 — Oast — oco. Solet Y = M and

lim |M E(M | Fs)|dP = lim |E(M M | Fs)| dP

5§—00 §—00

< lim | E(|M,— M||F,)dP
S— 00

= lim |My — M| dP
§—00 Q

= 0.

9. Compute

T t
. 1
/0 Bt o) dBt = nh_)Holo E 5(8% + B(jtbl)t)(B(jtll)t - B%)

Lntj 1 Lntj 1
1
:nh_>n010 Z B% +1)t—B]t)+nh_>rIC}O Z B(J+1)t—B]t)
1 t t
—_p2__24_Z
27t T35
1

10. If f(¢,w) varies smoothly in ¢, then the 1t6 and Stratonovich integrals coincide. Compute

[ rewyodn= [ e ass 50,y

and
B (), B < BB B B (1) /(1)
<T (KAL)

m su
Atk =0+ |ag,| [Aty]

= KT* lim | AL°
|Atel|—0+

=0.
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11. Define white noise W) = max{—N, min{W;, N}}. Since W, and W are independent
and identically distributed, it follows that Wt(N) and W™ are as well. If W, is continuous,
then since |Wt(N)| < N and by bounded convergence

lim 2E(W ™) = im E(JW™) — wM|2) = 0.

t—s t—s
But then W, = (), which is a contradiction.
12. Let odB; denote the Stratonovich differential.

(i) Since aX;0dB; = % X;dt + aX, dB,,

2
dX, = (v + %)Xt dt + aX,dB,.

Since (% + cos(X;)) o dB; = —%(F + cos(Xy)) dt + (£* + cos(X;) dBy,

sin(X;)

dX, = (cos(Xy) — t*) dt + (t* + cos(X,)) dB,.

(i) Since aX;dB; = aX;0dB, — ¥ X, dt,

2
dX, = (r — %)Xt dt + aX, 0 dB;.

Since X? dB; = X} o dB; — X} dt,
dX; = (2% — X?) dt + X7 o dB,.
13. Let X; be continuous in mean square. Calculate

(@) imE[(B; — B,)?] = limE[(B;_,)?] = lim(t — s) = 0

s—t s—t s—t
(b) T E[(£(B,) — f(B.))?] < lim C?E[(B, — B.)*] = 0

S—r S—r
(c) and finally by It6 isometry,

T 2 rooT
lim E (/ (Xs—gbn(s))st) = lim E / (Xs—gbn(s))st}
n—oo S n—o0 L S
r t(-"+1)
Y J 2
S B, (e X dt]

<(T-25) lim sup E[(X;— Xt(n))Q]

=0.
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14. Show that h(w) is JF; measurable if and only if it is the pointwise limit of a sum-product of
bounded continuous functions g(B;).

(a) Assume that & is bounded since { %, (w) = h(w)L{jn(w) \<n}} converges pointwise to /.

(b) Let #,, be the o-algebra generated by B(t;) for t; = £ < t. Then F; = o (U, H,)
and so by Corollary (C.9), h = ]E[h|]: | = hm ]E[h|7-[ ]

(c) By Doob-Dynkin, E[h|H,](w) = (Bt17 ... B(tj2n))). Since C(RF) is dense in
L'(R*) and by Stone- Welerstras P(R ) is dense in C'(R¥), a limiting sequence must
exist.

15. SupposeC+fS f(t,w) dB;(w) = D+fs (t,w) dB;(w). Then we have that

T

C—D:E[C—D]:EUS ot w) dB, (w /ftdet )}:o:czp,

and by Itd isometry,

(/ST (t,w) dBy(w /ftdet ))

whence ¢(t,w) = f(t,w) almost surely for (¢,w) € [S,T] x

0=E

- E[(g(tvw) - f(taw))2] d87
Q

16. By Jensen’s inequality, E [E[X |H]?] < E[E[X?|H]] = E[X?].
17. Let G be a finite o-algebra with partition Q = | |, G;.

(a) Note that E[X|G](w) = >, ¢;lg,(w) = ¢; on G;.
(b) Show that

fGiXdIP’ _fGiXd]P’ B .
/Gi (de> = @ /GildIP’_/GiXd]P’, Vie{l,...n}.

(c) By part (b), ¢; = %. Show for w € G; that
n fG_ X dP
E[X|G](w) = ; Wﬂei(w)
fGi X dP
- P(G))
. Z?:l akIP’(X = ag,Ww € Gz)
B P(Gy)

= aP(X = a|G)).
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The 1to Formula

1. Compute

(b) dX; =d(2+t+eP) = (1+ LeP) dt + eP dB,

© X, =d ((B")? + (B)?) = 28" aB" + 2B aB? + 241

(d) dX; =d((to+t,By)) = (dt,dBy)
(e) and finally

X, = d(B" + B® + B (B?)? - BVBY))
— dBY +dB® + dB® 2B dB® + dt — B® dB" — BY 4B,

2. Using Itd’s Lemma, differentiate
1 t
d <§Bt3 — /0 B, ds) = Bf dB, + B;d|B, B], — B, dt = deBt

and deduce that

t 1 t
/BgdBS:—Bf—/ B, ds.
0 3 0

3. Let X, and Y, be It6 processes. Then, letting f(¢, z,y) = xy and by 1t6’s formula
d(X:Yy) = filt, Xo, Vo) dt + fo(t, X, Vo) dXo + fy(E, X0, Y2) dY;

1 1
+ §fzx(t7 Xt7 }/;f) d[X7 X]t + fwy(tv Xt7 }/;f) d[Xa Y]t + éfyy(ta Xta }/;5) dD/a Y]t

14
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and deduce the integration of parts formula
t t
| xeavi= [ @ee - viax, - ax.v),)
0 0

t t
XY= XY - [ Vedx, - [ dpy).
0 0

4. Let Z, = exp (fot(ﬁ(s,w), dB.) — 1[0(s,w)|? ds).
(a) Then, letting Z, = e¥* and by Itd’s formula,

dZ; = " dY; + %e“ dlY,Y),
1 1 ¢ ; .
=7 <<H(t,w), dBy) = S0(t,w)|* dt + 5 Zl [0:(s,w) dBY, 0;(s,w) dBU)}S)
1,]=
= Z,(0(t,w),dB,).

(b) It suffices to check that
2
(1) )}

(s,w), dBs)

el
(f onersn)]

(/Z|Z@ (s,w)|dBY >2

_IE(Z/ 1Z04(5, )1 2.8,(s,)] d[BY B”])

_ ZE ([ 1zt a)

< OQ.

al
-|r

5. Let 8 (t) = E(BF). Then, by 1t6’s lemma,
1
dBF = kBF ' dB, + §k(k: — 1)Bf2dt
and so

Bu(t) =E(BF) =FE (/Ot dBf) = /OtIE (%k(k: — 1)Bf—2> ds = —1) / Br—a(s) ds.

Deduce that 3,(t) = 6 [ Ba(s)ds = 6- & = 3> and Bs(t) = 15 [, 35> ds = 15¢%.
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. . . n )
6. Define geometric Brownian motions X, = et@Bt and Y, = ect+2i—1 B

(a) Calculate

1
dX; = ce™ P dt + ae TP dB, + §a260t+0‘3t d[B, B)
o2

(b) Calculate

dY, =Y, (c dt+> a;dBY + 5 > aioyd[BY, B%)

j=1 ij=1
1 n n )
=Y, ((c+ §Zaf)dt+2ajd3t(j)> :
7j=1 7=1
7. Let X, solve dX; = v(t,w) dB;.
(a) Note that B, is a martingale while B? is not.

(b) Define M, = X2 — [ v(s,w)?ds. Then

dM; = 2X,dX, + [dX,dX]; — v(t,w)?, dt
=2Xw(t,w) dB, + (v(t,w)? — v(t,w)?) dt
= 2Xt’U<t, CU) dBt

Moreover,
t
E(|M,)) < E(X?) +E </ v(s,w)? ds>
0
t 2 t
=F (/ v(s,w) dBS) +E </ v(s,w)? d8>
0 0
=2E (/ v(s,w)? ds)
0
< 0.
8. Let f(x(), ... 2(™) be a function of class C2.

(a) By Itd’s lemma,

N OIS » Bu)
d(f(Bt»—;azf(Bt)dBt +5 > 05f(B)dBY, BV,

ij=1

= (Vf(B:),dB:) + %Af(Bt) dt

16
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and so

1(B) = 180) = [ a8 = [((0rB).dB) +5 [ A as

(b) Assume that g is of class C! everywhere, as well as C? and uniformly bounded outside
of finitely many points with |¢”(z)| < M for z ¢ {z1, ...z }. Then the set of functions
{f} of class C? uniformly bounded with | f”(z)| < M are C’k’—dense So we can extract
a sequence { fy} such that fy, = ¢, f;, = ¢ aswell as f;/ — ¢” and |f}/| < M on
R\ {z1,... 2} So

tim (5= (B0 + (e~ 90) + [ (7o) a8, +;/<;;—g">ds

< Jm (= 9)(B|+ e = O + 15— 'l + 5 [ 152
=0,

where the last term vanishes by bounded convergence.

9. Clearly
"9

tATh ag
Vo —— (8, Xs)Xs<r, dBs :/0 Uf)_x(s’Xs)st

and the result follows by Itd’s lemma where d.X; = udt + vdB;. Since E(|X;|) < oo, it
follows that lim P(7,, > t) = lim P(X; < n) = 1 and so the identity holds almost surely.
n—oo n—oo

10. (Tanaka) In this problem, Tanaka’s formula for Brownian motion is derived.

(a) Substitute v = 0 and v = 1 here. Then as g”(z) = Ly|y)<-(2)

1 [*dPg. I 1
- B.)ds — — eeds = —|{s € [0.4]|B. .
s [ SeByds = o [ aicds = it € 00118 < <)

(b) Differentiate to get

t t BS
/ 9L(Bs)X|B.|<e dBs = / —X|B,|<e dBs,
0 0 9

and apply Ito isometry to get

t g 2 t g2 t
lim E (/ = X|B.|<e dBS> = lim E ( —5 X|Bs|<e ds) < lim / P(|Bs| <e)ds =0.
e—0t 0 £ e—0t 0 £ e—0t 0
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(c) Ase — 0for g(z) =z,
t
1
By| = |Bo| + 1i B, cds+ lim —|{s € [0,4]||B,| <
| Bl !o\+ggg+/osgn( XiB.jze ds + lim ——|{s € [0,¢][|Bs] < e}

t
= | Bo| —|—/ sgn(Bs) ds + L.
0

11. Let X, = e*?cos(B,), Y; = e'/?sin(B,) and Z;, = (B, + t)e~P'/2. Compute

(a) dX; = Le'/? cos(B;) dt—e"? sin(B;) dBi+3(—€'/? cos(By)) d[B, B]; = —e'/?sin(By) dB;
(b) dY; = Je'/?sin(B,) dt+e'/? cos(By) dBy+1(—e"/?sin(B,)) d[B, B); = e"/? cos(B;) dB;
(c) and finally

dZy = e P PA(By + t) + (By + t)d(e P 71?) + d[By + t, e B
1 1
= e Bt2(dt + dB,) — 5 Xedt — X, dB, — e B2 gt 4 §(Bt +t)e Bet2 gt
— e B=U2(1 —t — B,)dB,.

12. The given condition implies E(| X;|) < oo. So X is a martingale if and only if E(X; | F,) =
X,. Then

([ ulrw) dr| F) = E(X, - X, F) =
Moreover by dominated cosnvergence
B(ult, ) dr | 7) =BG [ utr)dr| 7) =
Then
u(t,w) = E(u(t,w) | F) = lim Blu(t,w) | F,) =

13. Let dX; = u(t,w)dt + dB; where u(t,w) € V([0,T]). Then Y; = X;M, is a martingale,

where
t 1
Mt:exp<—/u - = (r,w) )
0 2 Jo
since E(|M;|) < oo (see question 4b), E(| X;|) < <\ / fg u?(r,w) dr + 1) < oo and

A(X,M,) = MydX, + X,;dM, + d[X, M];
1
= M, (u(t,w) dt + dBy) + M X, (—u(t,w) dB;, — §u2(t,w) dt)

1
— Myu(t,w) dt + §MtXtu2(t, w)dt
= Mt(l — u(t, (A))Xt) dBt
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14. In this problem, the martingale representation of stochastic processes is explicitly shown.

(a) Compute dF;, = dB;, E(Fr) =0 and
dF, — dE(F,) = 1dB, = f(t,w) = 1.
(b) Compute dFy = By dt, E(Fr) = 0 and
dF, — dE(F,) = B,dt = d(TBy) — tdB, = (T — t)dB, = f(t,w)=T — L.
(c) Compute dF; = 2B, dB; + dt, E(Fr) =T and
dF, — dE(F,) = 2B,dB, + 1dt — 1dt = 2B,dB, = f(t,w) = 2B,
(d) Compute dF; = 3B?dB; + 3B;dt, E(Fr) = 0 and

dF, — dE(F,) = 3B} dB; + 3B, dt
=3B+ 3(T —t))dB, = f(t,w) =3B+ 3T — 3t.

(e) Recall that e?+~/2 is a martingale and compute
d(eBt—t/2> — eBt—t/Q dBt

Deduce that
T
eBr = T2 <1 +/ eBet/2 dBt) — f(t,w) = BHTD/2,
0

(f) Find martingale e'/? sin(B;) and compute
d(e'?sin(B,)) = e'/? cos(B,) dB;

Deduce that
T
sin(Br) = e_T/Q/ e?cos(By) dB;, = f(t,w) = e T2 cos(B,).
0
15. Define X; = (z'/® + 1 B;). Then

1 1 1
dX, = 3X P d(x"? + SBi) + 3X,%d '3 + 5B at/d + 2B

1
= X3 4B, + §th/3 dt.



Chapter 5

Stochastic Differential Equations

1. Compute

(a) dX; = d(eP) = B dB, + 17 d[B B, = X, dt + X, dB,

(b) dX, =d (L) = 1 dB, — L dt = 1 dB, — L X, dt

+
(¢) dX; = d(sin(By)) = cos(B;) dB; — § sin(B;) dt = cos(B;) dB; — 3 X, dt
(d) dxV = dt and
dX® = d(e'B,) = €' dB, + ¢'B, dt = ' dB, + X\? dt.

(e) and finally differentials
1
d(cosh(By)) = sinh(B;) dB; + 3 cosh(By) dt

and

1
d(sinh(B;)) = cosh(B;) dB; + 5 sinh(By) dt

axV\ 1 X() x?
== B,.
(dXF) 2 \ x? i+ X§) 4B

2. Let XV = acos(B,) and X{* = bsin(B,). Then

to deduce that

1
dXV = —qsin(B,)dB, — gcos(Bt) dt = —5x," dt — %X@ dB,

and

b 1 b
dXt(2) = bCOS(Bt) dBt — 5 SiIl(Bt) dt = —§X dt + X(l) dBt

20
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3. The solution is given by
X, = Xgexp ((7‘ — %iai)t + iak dBk> :
k=1 k=1
4. In this problem, solutions to stochastic differential equations are found.
(a) The solution to dXt(l) =dt + dBlfl) is Xt(l) = X(()l) +t+ Bt(l) and
dx® = xV B = (x{" + t + BV) dB”

is

t
X Z x4 x(0pe +/ (s+ BV)dB®.
0

(b) Using integrating factors, solve dX; = X; dt + d B, for
t
e_tXt — XO = / 6_8 dBS
0
and deduce that the solution X} is
t
X, =e' X+ / e'~* dB;.
0
(c) Using integrating factors, solve dX; = — X, dt + e tdB; for
t
X, — Xy = / dB,
0

and deduce that the solution X; is
Xt = e_t(X() + Bt)
5. The Langevin equation is given by
dXt — [I,Xt dt = O'dBt
(a) Using integrating factors, solve for
t
X, — Xy = / e "o dB,
0
and deduce that the solution X is

t
X; = e X, + O'/ er(t=s) dBs;.
0

21
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(b) The expected value of X; is
E(Xt) = 6'“th

and, by It isometry, the variance of X, is

t 2 t 2
V(X,) =E | 02 ( / ert=9) dBS) =FE (02 / 62“(ts)ds) =7
0 0 21

6. Suppose Y; is given by
dY; =rdt+ oY, dB;.

Using integrating factors, solve for

2
d(e *Pry}) = 7By, (r - %) dt

and
042 t Cl2
e BtElY, Yy = / re Bt s,
0
Deduce that
2 t 2
Y, = BTy 4 T/ e Bi=Bs) =5 (t=5) .
0
7. The Ornstein-Uhlenbeck process is given by
dX; = (m— X;)dt + o dB,.
(a) Using integrating factors, solve for
t t
e X, — Xy = / e*mds +/ e*o dB;
0 0
and deduce that the solution X is
t
Xi=e'Xg+m(l—e")+ a/ e* ' dB,.
0

(b) The expected value of X; is
E(X;) =m+e (X —m)

and the variance of X; is

V(X)) = E <02 ( /0 ot dBS)2> _E (0—2 /0 e ds) _ %2(1 _

672t)'

22
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8. Consider the stochastic differential equation

axM™\ (o 1\ [xV g (@ dBY
dx? -10)\x? BdBP )’
By d’Alembert’s formula, it has a solution of the form

t
X, = e X, + / At g(s) ds,
0

() (5 () (e

Conclude that the solutions are

where

t t
X = x8V cos(t) + X sin(t) + a/ cos(t — s) dBWY + B/ sin(t — s) dB?
0 0
and
t t
x® = _ él) sin(t) + XSQ) cos(t) — a/ sin(t — s) dBWY + 5/ cos(t — 5) dB?.
0 0
9. Let dX; = In(1 + X7?) dt + x{x,>03 X+ dB;. It suffices to check that
2
bt @) + ot 0)] = (1 +2%) + Xgasoy o] < Z(J2] +1) + [2] < 2(|2] + 1),
E(|Xo[*) = a? < o0, and

[b(t ) = b(t, y)| + lo(t,2) — o(t,y)] < [In(2?) — In(y*)| + |z — y| < 3]z —y|.

Hence, by Theorem 5.2.1, there is a unique strong solution to the stochastic differential
equation.

10. Calculate

E(X}) =E (Z + /Otb(s,Xs) ds + /Ota(s,Xs) dBS)2

2 +E (/Ota(s,Xs) st>2>
<3 (IE(ZQ) +TE (/Ot b(s,Xs)st) +E </0t0(3,X5)2d8))

< 3E(Z?) + 6C? (T + /Ot E(]X,|?) ds) (T +1)

= (BB(2)+ 60T (T + 1) + 60T +1) [ BX[)ds.

and apply Gronwall to derive the result.
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11. Consider the stochastic process

" dB
Y;:a(l—t)—l—bt—l—(l—t)/ >
o L —s

Then Yy = a and, for ¢ € [0,1), ¥; solves

b dB, dB;
dY, = (b—a)dt — dt+ (1 —1
= O—ad— [ a0
1 * dB,
—a)(l—1¢t)—(1— B
= (0-au-0-a-n [ ) aran,
1 t dB
—a(l—t)—0bt—(1— * ) dt+dB
1_t<b a(1— 1) — bt — ( t)/ol_s) t +dB,
1t
2
Finally by It6 isometry E <(1 —1)? J%) fo (1 mds = (1—t)t = 0as
t — 1~ and so limit lim Y; % b.
51—

12. Lety”(t) + (1 + eW,)y(t) = 0 where W, = 92t is 1-dimensional white noise.

(o) = (5 a) () e (2 9) () o

(b) Check that, if y(t) = y(0) + ¢/'(0)t + fg(r —t)y(r)dr + f(f e(r —t)y(r) dB,, then

(a) Rewrite

y@:wm—lmwm—AaMM&:y@—Ayma+mwm

and y'(t) = —(1 4+ eW,) dr.

13. Let 2} + aox} + w?z; = (Ty — apx})nW; where W, is 1-dimensional white noise. Then

dact o 0 1 T 0 0 0
(32) = (o ) () (0 ) G2) o () 2

and by d’ Alembert’s formula the solution is

t t
X, = e X, + / AKX, dB, + / AN dB,.
0 0
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The eigenvalues of A satisfy A*+agA+w? = Oand are Ay = —% 4/ w? — ?i =: — A&
Then take the exponential of matrix A

w (1 1\ [eM 0 1 o1\
<= (A+ )\_) ( 0 e“) ()\+ A_)

B 1 )\,€>‘+t _ )Ure)\,t e>\,t _ e>\+t
m A (Mt — et N et — N et

1 (e M(=X-2isin(&t) — &i - 2 cos(Et) e M(—2isin(&t))

2 —w?e M (—2isin(&t)) e M(=\- 2isin(&t) — &i - 2cos(Et) + 2\ - 2isin(Et))
e (Asin(&t) + € cos(&t) sin(&t)

R —w? sin(&t) Asin(&t) + € cos(Et) — 2 sin(Et)

e—At

Next, letting ys = 25, gr = €

GA(t_S) KXS

and

eA(t_S)M

((Asin(&t) + € cos(&t)) ] + Asin(Et)) .

§

It follows that

and

M\t sinéét) and ht _ e*)\tw, compute

t
Ty = 77/ (TO - aOys)gt—s st
0

t
Y = 77/ (To — aoys)hi—s dBs.
0

14. Letting Z, = F(B,), where B, = B + iB®, calculate

dZ, = F,(B,)dB" + F,(B,) dB{”

| —

(ug + ivy) dB
(F'(By),dBy) +

(F'(By),dBy) +
(F'(By),dB).

SFu(B)d[BY, BV, + Fy(B) dBY, B, + F,,(B,) d[B?, B,

: 1 : :
(uy + 1vy) dB® + E(um + (Vg + Uyy + 10yy) dt
(Vgy — WUy + Uy + 10y, ) dt

+
1
2
1 ) .
5(_uyy — Uy + Uyy + 10y, ) di

__agne X (0 sin(§(1 — s)) T\ _ [ —00nYsgi—s
- £ <O Ecos(&(t—s)) — Asin(E(t —s)) ) \4s)  \ —aonyshi—s

_ Tine 27 (g cos(€(t iir;%(:ssi)r?(ﬁ (t— s))) - (Z;ggi) |

)
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15. Consider the non-linear stochastic differential equation
dXt = T'Xt<K — Xt) dt + BXt dBt, XO =z > 0.
Comparing to the deterministic Bernoulli equation, do a substitution Y; = X; !, then

dY, = —rYi(K — X,)dt — Y, dB, + B*Y, dt
= (—rK + B)Y,dt — BY,dB, +rdt.

Next do a new change of variables
Z, = YKt
and calculate
dZ, = —BZ, dB; + re™ )t gt
= 7, =e PB (Z‘l - r/t e(rk=F)s+ABs ds) .
0

Conclude that

e(rk—ﬁ2)t e(rk—ﬁz)t+ﬂBt
Xy = = .
¢ 7, vt [l etk 4B g

16. Consider the non-linear stochastic differential equation

dXt = f(t, Xt) dt + C(t)Xt dBt, XO =XT.
(a) Let Fy(w) = exp <— f[f c(s)dBs + 3 fot c(s)? ds). Then calculate
d(FtXt) - Xt dFt + Ft dXt + d[Ft, Xt]

_x {Ft (—c(t) iB, — %c(t)Q it — %c(t)Q dtﬂ
+ [f(t, X)) Fy dt + c(t) X, F, dB,) — c(t)*F, X, dt

- f(t, Xt)Ft dt

(b) Defining Y; = F; X}, deduce that

04

I = Fy(w)f(t, Ftil(w)Y;f(W))

(c) Consider dX; = X; ' 4+ aX,dB,;, Xy = x > 0. Then

a%
dt

_ 2 _
—e 2aBi+a t}/t 1’
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which implies

t
}/t — \/%2 _|_ 2/ e*QCMBrFaQS ds
0
) t
X, =BTt g2 4 2/ e—2aBi+a®s (g
0

(d) Consider dX; = X/ dt + aX;dB;, Xog = x > 0. Then

and

@Yy _ -aBer-m) Gy
dt

which implies

1

t -
Y, = (Yo” +(1-7) / e“’”Bs““)“des)l
0

and

2

t . \T7
X, = e*B=Ft <x17 +(1- ’y)/ e~ (=N Bs+(1=7)5s ds) .
0
17. Let v > 0 satisfy v(t) < C' + A [ v(s) ds and consider quantity w(t) = [, v(s) ds. Then
t
w'(t) =v(t) <C+ A/ v(s)ds = C + Aw(t).
0

Then for f(t) = w(t)e~*, calculate

Fi(t) =" (w'(t) — Aw(t)) < Ce™

and
w(t)e A </ Ce % ds = %( — e
= w(t) < g(eAt —1).
A
Deduce that

v(t) < O+ Aw(t) < Ce™.
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