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Part I: The theory of coupling between internal and surface waves for strat-
ified fluid domains is a rich source of dispersive and non-linear model
equations with broad applications to ocean engineering. We study the two-
dimensional water wave problem consisting of two fluid domains, the
lower of which is infinitely deep, separated by a sharp interface, which
is due in practice to a temperature or salinity gradient, and analyze the
coupling effect of free internal and surface waves. Starting from the incom-
pressible, irrotational Euler equations of motion for a two-layered fluid
consisting of two different densities, we use its Hamiltonian formulation
and the corresponding canonical variables to derive a coupled system for
the evolution of two waves, where the small amplitude, internal long wave
is modelled by a Benjamin-Ono equation. The surface elevation, on the
other hand, has a shorter wavelength and is modelled by a modulated
monochromatic wave whose envelope satisfies a time-dependent, linear
Schrodinger equation. The coefficients of the coupled system are evaluated
in terms of the physical parameters. Our results extend previous work

on the coupled Korteweg-de-Vries and modulational regime for coupling
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between internal and surface waves in shallow water by Craig, Guyenne

and Sulem ([CGS11], [CGS12]) to the case of deep water.

Part II: Bochner formulas are often the starting point for the analysis of Rie-
mannian manifolds with bounded Ricci curvature. We generalize the classi-
cal Bochner formula for the heat flow on evolving manifolds (M, gt)e[o 1]
to an infinite-dimensional Bochner formula for martingales on parabolic
path space PM of space-time M = M x [0, T|. Our new Bochner formula
and the inequalities that follow from it are strong enough to characterize
solutions of the Ricci flow. Specifically, we obtain characterizations of the
Ricci flow in terms of Bochner inequalities on parabolic path space. We
also obtain gradient and Hessian estimates for martingales on parabolic
path space, as well as condensed proofs of the prior characterizations of
the Ricci flow from Haslhofer-Naber [HN18a]. Our results are parabolic

counterparts of the recent results in the elliptic setting from [FHN18b].
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COUPLING BETWEEN
INTERNAL AND SURFACE
WAVES IN DEEP WATER



INTRODUCTION

A fluid domain, such as an ocean or a sea, is often stratified into layers of
differing densities due to temperature or salinity gradients. Internal solitary
waves and their effects on ocean dynamics have been widely observed with
detection technology. In particular, these internal waves present implica-
tions for underwater navigation and the engineering of offshore structures.
The signatures of these waves have been surveyed by hydrologists and
oceanographers, such as Perry-Schimke [PS65], Osborne-Burch [OB80] and
Helfrich-Melville [HMO06].

Some early measurements made in the Andaman Sea found internal waves
of high amplitude, 80 metres, and long wavelength, 2000 metres, with a
thermocline situated at roughly 500-metres deep in the 1500-metre deep
sea [PS65]. More recently, evidence of internal solitons inducing riptides
in coastal seas has been observed [HM06]. A characteristic change in the
reflectance of the water surface and the observed “ripple effect" have pro-
vided empirical evidence of coupling between a longer-scale internal wave
and a shorter-scale, rougher and more rippled, surface wave. This striking
phenomenon in which rough waters are present in a relatively quiescent sea
has been described as the “mill pond effect" [OB80], which can be explained
by the fact that water is calmer after the passage of internal waves.

According to the US Geological Survey (www.usgs.gov), if there is a sharp
thermal gradient separating a warmer upper fluid domain from a cooler
lower one, then the former will be marginally less dense for temperatures
in excess of 4.4°C. As such, the density ratio is typically near unity and
not less than 0.995 for upper temperatures below 32.2°C. A schematic of
a two-dimensional fluid system consisting of two domains with a longer-
scale internal wave and a shorter-scale wave envelope is shown below in
Figure 1.1, in which there is effectively no bottom as we assume the lower
fluid domain is infinitely deep. The conjugate variables # and #; denote
the elevations of the internal and surface waves, while physical parameters
g, h1, p and p; are the gravitational constant, the height of the upper fluid
domain and the two densities, respectively.


https://www.usgs.gov/
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p i =oc

Figure 1.1: Two Fluids Separated by a Sharp Interface

There exists extensive literature on the resonant coupling between internal
and free surface waves. For instance, there have been studies of resonance
interaction for similar length scales by Gear-Grimshaw [GG84] and Parau-
Dias [PDO01], while differing length scales have been studied by Kawahara
[Kaw?72], Hashizume [Has80] and Funakoshi-Oikawa [FO83]. A system of
two Korteweg-de-Vries (KdV) equations coupled by the strong resonant
interaction of close phase velocities is produced in [GG84], while combi-
nation waves from the interaction of modes with the same phase speed
but differing wavelengths are calculated in [PDO01]. In the case of differing
length scales ([Kaw?72], [Has80] and [FO83]), steady solutions are studied
through numerical computation. The model equations for non-linear inter-
action of the two modes have been derived in [Kaw?72] and [Has80].

The phenomenon of surface rips and the mill pond effect after their passage
have been described further by Craig-Guyenne-Sulem [CGS12]. In their
paper, they address the characteristic narrowness of the surface rips in con-
trast to the broadening of internal solitary waves. Moreover, they precisely
determine the surface wave, the location of its rip with respect to the centre
of the internal wave as well as the degree to which the mill pond effect is
due to wave breakage and the passage of internal waves.

From a mathematical formulation for two-layered water flows, we derive
a coupled system of equations modelling the signature ripping and cou-
pling effects induced by a non-linear internal wave on a lower-amplitude,
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modulating free surface, in the case of different length scales. We explicitly
provide the non-linear coupling coefficients, which are dependent on the
physical parameters of the system for the interaction including a density
ratio between the two fluid domains that is close to unity. Specifically,
we analyse the coupling effect of the internal and surface modes on the
modulation of quasi-monochromatic surface waves caused by the resonant
excitement when the group velocity of the surface wave coincides with the
phase velocity of the longer-scale, less rippled, internal wave.

We consider a two-dimensional fluid domain consisting of two immiscible
fluids separated by an interface, which idealises a sharp thermocline or
pycnocline. We assume that large amplitude, non-linear and non-dispersive
long-waves are generated at the interface. In practice, this occurs as tides
move relatively cold water over the ridges of submerged mountains.

Starting from the incompressible, irrotational Euler equations of motion
for two immiscible fluids in the close density regime of our water wave
problem, we derive the Hamiltonian formulation, based on the original
work of Zakharov’s [Zak68] as well as work by Craig-Sulem [CS93] and
Craig-Guyenne-Kalisch [CGKO05], needed to perform both the necessary
asymptotic analysis of the Dirichlet-Neumann operators and the normal
mode analysis of the linearised equations.

Applying the Hamiltonian formulation of the water wave problem, in
which the energy is a conserved quantity, and as done by Craig-Guyenne-
Kalisch [CGKO05], we write the quadratic and cubic terms of the Hamil-
tonian in canonically conjugate variables. Afterwards, we use multiple
scale and modulation analysis to derive a higher-order Benjamin-Ono (BO)
equation coupled to a linear Schrodinger equation that describe the time
evolution of the internal wave and surface wave envelope, respectively.
Under the Hamiltonian formulation, this problem has been studied exten-
sively by Craig-Guyenne-Sulem ([CGS11], [CGS12] and [CGS15]) in the
case of a shallow lower fluid. Our results extend their work to the case
where the lower fluid has infinite depth.

The broad literature on internal waves in oceanography primarily focuses
on two physical settings: (i) fixed lids and (ii) coupling between internal
and surface waves. For the former case, a large class of scaling regimes
have been used to model weak non-linearity of the interface, such as by
Benjamin [Ben67], Ono [Ono75], Camassa-Choi [CC96] and Camassa-Choi-
Michallet-Rusds-Sveen [CCM " 06].
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In this thesis, we focus on the latter case of coupled interaction between
internal and surface waves in the deep water regime where we truncate the
Hamiltonian at cubic as opposed to at quadratic order in the canonically
conjugate variables. Given 77(x,t) ~ er(X, T), where 7 is the elevation of
the internal wave, X = ex and T = £2¢, the free interface evolves according
to a higher-order BO equation

Orr = w10x(|Dx|r) + axd3r + azr(dxr)
+ ay0x (|01]%) + as [0x (r(IDx|r)) + |Dx|(roxr)]
+ a60x [01(Dx01) + 01(Dxv1)] + azdx (|Dx|(|o1]%)), (BO)

which is coupled to a free surface that both propagates at resonant group ve-
locity w’ (ko) = cp and is modulated by a time-dependent, linear Schrédinger
equation. Given 17; ~ £ 90 (X, T)e*o¥, where 7 is the elevation of the sur-
face wave, the surface envelope satisfies

i0701 = B10%01 + Barv1 + Bsi(Ox (rv1) + rdxv1) + Bsvi(|Dx|r).  (LS)

The operators are Dy := —idx and |Dx| = Dxsgn(Dx) = H0x, where H is
the Hilbert transform with symbol —i - sgn(k). Each coefficient «; and B;, for
ie€{1,2,3,4,56,7}and j € {1,2,3,4}, depends on the physical parameters:
the gravitational constant g, the height of the upper fluid domain /; and the
two densities p and p;. We ultimately derive this coupled system of model
equations (BO) and (LS) in terms of the physically-determined coefficients.

Part I of the thesis is organised as follows:

¢ In Chapter 2, we describe the water wave problem, beginning with
Euler’s equations for an incompressible, irrotational two-layered fluid.
We present its Hamiltonian formulation in terms of canonical vari-
ables (1,#%1,¢,&1) where 1,11 are the elevations of the internal and
surface waves and ¢, ¢; are their conjugated variables.

¢ In Chapter 3, we recall from [CS93] and [CGKO5] the expansions
of the Dirichlet-Neumann operators for the lower and upper fluid
domains in powers of variables 1 and 7;.

¢ In Chapter 4, we present the linear analysis of the fluids near rest, find
the dispersion relation and perform a normal mode decomposition to
diagonalise the quadratic part of the Hamiltonian.

¢ In Chapter 5, we calculate the cubic terms of the Hamiltonian in two
canonically conjugate coordinate systems.
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¢ In Chapter 6, we introduce the scaling regime under consideration.
The internal wave varies on long scales and has small amplitude
as described by the Benjamin-Ono scaling 17 ~ €j(ex). On the other
hand, the upper surface is modelled by a modulated wave packet
1 ~ €171 (ex)e ¥, where we assume ¢; « .

¢ In Chapter 7, we use Hamiltonian transformation theory and a reso-
nant condition to derive an asymptotic system composed of a higher-
order Benjamin-Ono equation for the internal wave coupled to a
linear Schrédinger equation for the wave envelope of the free sur-
face. We give the coefficients of this system explicitly in terms of the
physical parameters. We conclude with a brief discussion of future
work.



FORMULATION OF THE
PROBLEM

2.1 EQUATIONS OF MOTION

The two-dimensional fluid domain is composed of two immiscible fluids
separated by a sharp free interface {y = #(x)} into lower and upper regions
given by

S(m) ={(xy),xeR,—0 <y <n(xt)} (2.1)

with lower fluid density p, and

S1(1,m) ={(x,y),xe R,n(x,t) <y <h +m(xt)}, (2.2)

with upper fluid density p;, respectively. We assume that the system is
stably configured, p > p1, and that the fluid motion is a potential flow,
namely that the velocities u(x,y,t) = V¢(x,y,t) in S(t; ) and uy (x,y,t) =
Vi(x,y,t)in S(t;17,71) with the two velocity potentials, ¢ and ¢y, satisfy-
ing

{Agb —=0,inS(t;7) 23)

A([)1 = 0, in Sl(t; 17, 171)

First we assume that velocity flow ¢(x,y) — 0 as y — —c0. We shall also
assume boundary conditions, governed by kinematics and the balance of
forces, for both the free interface and the free surface.

On the interface between the two fluid domains, we impose kinematic
and physical constraints. Letting ¥ refer to the exterior unit normal pointing
out of the free interface, the two equations addressing the kinematics on
the interface are

0 = Oyp — (0x) (0xp) = V- VA/1 + [0y |? (2.4)
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and

o = oy = @) @) = Von -0 (— 1+ 10aR) . @9

On the other hand, the Bernoulli condition imposes a physical constraint

Iy <0t(p + %IV(I)IZ + gﬂ) =p1 <0t¢1 + %|V¢1|2 + gq) . (2.6)

Finally, on the upper free surface {y = 11(x) + h1}, velocity potential, ¢;,
and 7 satisfy both a kinematic condition

a18771 = y¢1 - (axﬂl)(axqbl) = V¢1 '171’\/ 1+ (axﬂ)zz (2-7)

where 17 be the exterior unit normal pointing out of the top of the free
interface, and a Bernoulli condition

1
orp1 + §|V4>1|2 +gn1 = 0. (2.8)

Our goal will be to describe the coupled evolution of the free interface and
the free surface.

2.2 CANONICAL VARIABLES AND HAMILTONIAN FORMULATION

The water wave problem has a Hamiltonian formulation as described in
Benjamin-Bridges [BB97] and Craig-Sulem [CGKO05]. See also Zakharov
[Zak68] and Craig-Sulem [CS93] for further details. The strategy for solv-
ing the coupled problem of free internal and surface waves is to use the
Lagrangian formulation, which depends on the perturbations both of the
free interface 7 (x, t) and the free surface 71 (x, t). Then we derive classically
canonical variables to provide a Hamiltonian formulation of the problem.

The kinetic energy is the weighted sum of the gradients of the two po-
tentials of the velocity flows

1 7(x) ) 1 hi+11(x) 5
K:J j 0|V (x,y) dydx+f f p1[Ver (x,y)[" dy dx,
(2.9)
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while the potential energy is given by

1 1
V=3 J]Rg(p —p)(x) dx + 5 J]R g1 (I +m)*(x) = hy) dx. (210)

In analogy with Lagrangian mechanics, (77, 11) are the spatial coordinates.
We will reformulate the problem in terms of canonically conjugate variables
to provide a Hamiltonian formulation of the problem.

We express the kinetic energy in terms of the boundary values for the
two velocity potentials and two Dirichlet-Neumann operators. We denote
the traces of the velocity potentials on the boundaries of the fluid domain

by

O(x) = p(x,n(x))
x) = pi(x,1(x)) (2.11)
x) =¢1(x,m+m(x)).

2.2.1 Dirichlet-Neumann Operators

We define Dirichlet-Neumann operators for the internal and surface waves
in the following way.

The Dirichlet-Neumann operator for the lower fluid domain is given by

G()®@(x) = (V) - V) (x,17(x))4/ 1+ |01, (2.12)

where again v refers to the exterior unit normal pointing out of the free
interface.

Due to the coupling of data ®1(x) = ¢1(x,7(x)) and Dp(x) = ¢1(x, Iy +
#1(x)), the Dirichlet-Neumann operator, which measures velocity flux, is
defined as a matrix operator

<G11(17,771) G12(77,771)> <<I>1(x)>
Go(n,m) Gan(y,m)) \P2(x)
O B e e T
(V1 - 1) (x, b1+ 171(x) ) /1 + [ 0w [2 '

where again 71 is the exterior unit normal pointing out of the top of the free
surface.
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2.2.2  The Kinetic Energy

Using Green’s identities and rewriting the normal derivatives of the traces
of the velocity in terms of the Dirichlet-Neumann operators, we express
the kinetic energy of the system as

= 1J pDG ()P dx
Gu(n,m)  Gu(y, 771)) ( )
D) dx. 2.14
f i ’ <G21(’7/'71) Goa(17,m)) \ P2 219
Continuing in the Lagrangian framework, we introduce velocity coordi-
nates (77,11) that are orthogonal to the spatial coordinates. In terms of

the Dirichlet-Neumann operators and the boundary conditions, we define
these variables by

{,7 = G(n)® = —(Gu(n,m)®P1+ Gr2(17,111)P2) (2.15)

1 = Go(n,m)P1+ Gy, 11) 2.

We write the Lagrangian for our coupled water wave problem based on
Equations (2.10) and (2.14) in terms of variables (1, 71,7, 1j1)

L:=K-V

1 1 Gn G2\ (D1
= f pPG(17)Pdx + J 1 (1 @) <G21 Gzz) <¢2> o

—fgp 1)1 dx—fgm (1 +m)?(x) — hY) dx

Gn G\ (1
-1 P f . <11 12) <>d
f PG ()7 dx URIDR ooy B (o
—f gp—p1)1 dx—f go1 ((hn +m(x))? —h3) dx. (2.16)

Next we compute the canonically conjugate variables by taking the Legen-
dre transform

(5)- ()= (S0 =n (S S (1)

D — @
<p N cg; 1) (2.17)

10
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This is also shown in Benjamin and Bridges [BB97] while the classical result
is found in Landau and Lifschitz [LL60]. Using these canonically conjugate
variables, we provide a canonical Hamiltonian description of the problem.

Theorem 2.1 ([(CGKO5]). The system of equations possesses a canonical Hamilto-
nian structure in terms of the canonically conjugate coordinates, (x,t), n1(x, t),
&(x,t) and & (x,t), with Hamiltonian H given by the conserved energy.

We restate the kinetic energy in these coordinates

K= 1J G Cl)( )dx— J((_j &) <_GC21 —GCZ;;2> (2) dx.

(2.18)
Defining
B(11,1m) == pGu (11, 11) + p1G (1), (2.19)
we compute
= pG1® — p1(G11P1 + G12P2)
= G (p® — p1P1) — G201
= Gn¢ — GG (2.20)
Similar calculations, such as in Benjamin-Bridges [BB97], yield
B®, =-G(n)E—2L
{ 1 (1)¢ — &Gzt 2.21)
p1d2 =&

and the kinetic energy can be rewritten as

K= 1f(g gl)< >dx

GuB'G(n) ~G(17)B™'Ga ¢
f (¢ gl)( GnB~'G(1) Plez—PPflcmBlGlZ) (§1> e

(2.22)

11
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2.2.3 The Hamiltonian and Equations of Motion

Hamilton’s equations

7 0 1 0 0\ /6H
¢l (-1 0 0 o |&H

il | =IVE= 0 0 o0 5 H (2.23)
& 0 0 -1 0/ \6H

describe the motion of both the free interface and free surface, while the
Hamiltonian is

H=K+YV

1 GuB~'G(n) ~G(7)B™ G ) (C)
‘2JR(5 1) (—GmB‘lG(n) 0~1Ga — ppy CuB-1Gin ) \&1 )

1 1
45 | sto=p0r@dx+ 5 [ gon ((n+m ) 1) v, @229

written in terms of our canonical variables (17,%1,¢,1).

12



DIRICHLET-NEUMANN
OPERATORS

We expand the Dirichlet-Neumann operators, G(17) and G(#,11), for the
lower and upper fluid domains S(#) and S1(#; 1), respectively, in terms of
powers of 77 and #;. We find the linear expansion of the Dirichlet-Neumann
operators for the free interface G(7)

G(n) =GO+ M) + 037 (3.1)

as well as the free surface G(17,111) = (Gij(17,11))
Gi(.m) = G + Gy ) + GV ) + O () P), 32)

where ijlo) and Gl.(jm) refer to the linear dependencies in # and 73, respec-
tively, for i,j € {1,2}. These expansions will be shown in the following
propositions, which reproduce the results for G(7), as found in Craig-
Sulem [CS93], and G(#,11), as found in Craig-Guyenne-Kalisch [CGKO05],
respectively. The analyticity of the series and its convergence for small data
is proved by Coifman and Meyer [CM85]. Also see Craig-Schanz-Sulem
[CSS97] and Lannes [Lan13] for further details.

3.1 TAYLOR EXPANSIONS IN THE LOWER FLUID IN POWERS OF 71

Proposition 3.1. [CS93] The Dirichlet-Neumann operator for the lower
fluid domain S(7) is

G(17) = |D|+ DyD — |D|y|D| + O (%), (33)
where D = —i0,.

Proof. For the lower fluid domain S(7), a particular basis of harmonic
functions is given by

Pr(x,y) = (a(k)eky + b(k)e‘ky) e'kx, (34)

13



3.1 TAYLOR EXPANSIONS IN THE LOWER FLUID IN POWERS OF 1

where a(k) = 1;-(k) and b(k) = 1y-o(k) with normalization ¢y (x,0) =
e**. Using Taylor expansion, the boundary values are given by the trace on
the free interface

y(x) = gl () = 3 E2)) (ak) + (-1)b(R) ) ™. (35)

!
= I

Next we relate the normal derivative on the free interface to G(7) ¢y

G(n)Dr(x) = (V¢ - V) (x,7(x))\/ 1+ [0 ]?

y=n(x)
= 2 IR aan(e) 1) (alk) + (1700
jz0 7
-3 ey (k) + (=)0 (k) ) €. (36)
jz0 7

to the Taylor expansions GU) (1) ®y(x). The constant term is given by
GO (y)e*™ =k (a(k) — b(k)) e™ = ksgn(k)e®™ = |kle®* (3.7
and thus

where the Dirichlet-Neumann operator G%) is written as a Fourier multi-
plier in terms of operator D. Rewriting the higher-order terms of the Taylor
expansion,

GY(y) = 5, Dy/(x)D (a(D) + (-1)/**6(D))

=36y D (a(D) + (-1)6(D)),  69)

we can then read the first-order term of the Dirichlet-Neumann operator

G(n)
GW(y) = DyD - G9yDsgn(D) = DyD — |D|y|D|,  (3.10)

as well as higher-order terms recursively, such as found in [CS93]. O

14



3.2 TAYLOR EXPANSIONS IN THE UPPER FLUID IN POWERS OF (7, 1/1)

3.2 TAYLOR EXPANSIONS IN THE UPPER FLUID IN POWERS OF
(n,11)

Proposition 3.2 ((CGKO05]). The Dirichlet-Neumann operator for the upper
fluid domain S(#;11) is

G(7,m) =G+ G ;) + GO (y) + O (7, m) ), (3.11)

where

GO ._ <Dcoth(h1D) —Dcsch(th)> (3.12)

—Dcsch(hiD) D coth(hyD)

G19(x)

__ (Dcoth(hiD)yD coth(hD) — DyD  —D coth(hyD)nDcsch(hiD)
o —Dcsch(hy D)y D coth(h D) Dcsch(hyD)nesch(hy D)
(3.13)

and
G ()
B <—Dcsch(h1D)171Dcsch(h1D) Dcesch(hi D)1 D coth(hiD) )

D coth(h1D)n1Desch(hiD) DD — D coth(h1 D)1 D coth(hy D)
(3.14)

Proof. For the upper fluid domain S(#;11), we also consider a particular
basis of harmonic functions

P1e(x,y) = (a(k)e® + b(k)e )™ (3.15)
satisfying boundary conditions
{¢EHX)Z4EH%U()) (a(k)ert) + b(k)e () ik

Dy (x) = Pri(x, b1 +11(x)) = (a (k) khlek’“( ) 4 p(k)e K e—km(x))eikx,
(3.16)
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3.2 TAYLOR EXPANSIONS IN THE UPPER FLUID IN POWERS OF (7,171)

As before, we calculate the normal derivatives on the free interface

Gu1 (1, 11) P + Gia(n7, 1) Do
(Ve D+ B2

ezkx

= 25 ) @an () () (o) + (~1)b(K))
j=0 /°

“ENE) (a6) + (1770 6.17)
j=0 /°

as well as those on the free surface

Go1(17,11) Pk + G2 (17, 1m1) Do
= (V- 1) (1 + |0 (x) )/ 201 |

y=h1+m(x)
zkx ' '
- Z j! —m(x) ( 5x771(X))(ik]+1) (a(k)ehlk—F (—1)]b(k)e*h1k)
0
+2, ef{’?l(x)j(kj“) (ﬂ(k)e’“k + (—1)f+1b(k)e‘h1") . (3.18)
>0 /°

Taking a basis of harmonic functions with coefficients of the form

_p—Ink ok
(a1 (K), by (K)) = (ehlk e e_hlk) (3.19)
and
1 -1
(a2(k), by (k)) = (ehlk g S ehlk) , (3.20)

we relate these normal derivatives as before by admitting double Taylor
expansions of the Dirichlet-Neumann operator in terms of # and #;.

Now reading the Taylor expansion recursively, using the first basis of
harmonic functions, we find two of the constant terms

G(O) G(O) oikx B —k(m ( )—bl( )e ikx
(eﬁn c§§>> (0 ) = (ko hres eyt

eikx
“(Cesthae)o®
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3.2 TAYLOR EXPANSIONS IN THE UPPER FLUID IN POWERS OF (7, 1/1)

whence
GY(D) = Deoth(iD); GY(D) = —Desch(ly D). (3.22)

Similarly, we find the remaining two constant terms

Gy Gy ( 0 ) _ ( —k(a(k) — by(K))e™ )
Gé(l)) Gég) ezkx k(uz(k)ehlk _ b2 (k)e_hlk)elkx
[ —kesch(hik)e'*~
B ( kcoth(hyk)e* )’ (323)
whence

GY(D) = —~Desch(mD);  G(D) = Deoth(iyD).  (3.24)

By a similar argument to the previous proposition, we can read recursively
the first-order (as well as higher-order) terms, the expansion of which is
presented in [CGKO05] and [CGS12]. O

Using Propositions 3.1 and 3.2, we can verify

10 0 0 01 0 0

e i R M e

Gél )= ng)’?G&); Gél )= *G§1)’71G§2) (3.25)
10 0 0 01 0 0

o Zabuclt; o= el + oo,

Moreover, the operator B(1, 1) defined in Equation (2.19) has the Taylor
expansion in (7,71 ) of the form

B = By +BY + O(|(,m)%) (3.26)
where

By =Gy +01G”,  BY = pG{i” +pG 1V + 016V (327)

and we intentionally write By instead of B() to simplify further notations.

We also write the inverse of the operator B!

B~' = (Bo + BY + O(|(7, 1))~
= By' — By 'BYB; + O(|(n,m) ). (3.28)

These calculations will be used to perform the linear analysis and find the
cubic terms of the Hamiltonian.
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LINEAR ANALYSIS

4.1 LINEARISED EQUATIONS NEAR FLUIDS AT REST

We derive the quadratic Hamiltonian H?) = K(2) 4- V(2) and then write the
linearised equations of motion near 77 = #77; = 0. We recall the Hamiltonian

1 GuB'G(1) —~G(17)B~'Gr2 g
"= ZJ]R € &) <—G2131G('7) Pflczz—PPfleBlGlz) <€1> A
+3 | sto—ponrmax+ 3 [ gor ((m+m20-1) ax @y
R R

from the previous section. First we note that there is no linear term in the
Hamiltonian since #; can be chosen to that { #71(x) dx, the net volume
above h, is zero. Next, we proceed to the quadratic Hamiltonian in canoni-
cal variables using the lowest-order terms in the Taylor expansions of the
Dirichlet-Neumann operators.

Proposition 4.1. In canonical variables (7, 1, ¢, &1), the quadratic part of
the Hamiltonian is

H® = % fR 2G\VGOB; e 266 VB; 16
+ 107" GO (Gl + G )B &1 ] + [g(p — 1) + gpund] dx,
(4.2)
where By = pDcoth(h1D) + p1|D| from Equation (3.27).
Proof. We have the quadratic part of the potential energy
Ve =2 fR [8(0 = p1)7* + gorn] dx (4.3)
and that of the kinetic energy
k@ = [ [e6 By "6 2:606 0By ey
+ &1 (077Gl — po7 By (G &) . (44)

18



4.2 DISPERSION RELATION

Using the identity (Gﬁ)) )2 — (Gg))2 = (G))2, the third term can be simpli-
fied to
pr'GY — e B (G = o1 (G (0GLY +01G) —p(GLY)?) By
= 0769 (0,GIY + pG)B; T, (4.5)
which yields the result. O
The linearised equations of motion can now be written.

Proposition 4.2. The linearised equations of motion for (7, ) are given by

0) p—
{ o = 6:H? = GYVB;1G0¢ - cOGY B¢ w6

ol = —6,H? = —g(p— pl)m

while those for (71, ) are given by

o = 0, H® = ~GOG By e+ (07'GY) — ooy "By ' (G2)?) &
061 = =6, H? = —gpi.
(4.7)

Proof. The linearised equations of motion follow directly from applying
Hamilton’s equations. For example, we can calculate the functional deriva-
tives for canonical variables ¢

6:HD[g,&1,m,m)(0) = lim 671 (HO[¢ + 0] - HA[g])

6—0t

= (G'B G (ne + GG By e 0) . (48)

The calculations for the remaining variables are similar. O

4.2 DISPERSION RELATION

We derive the dispersion relation for this Hamiltonian system from Equa-
tions (4.6) and (4.7).

Proposition 4.3. The dispersion relation for this Hamiltonian system satis-
fies
1+ coth(hq|k|) 1

pcoth(im k) + oK) T8 0~ Pk i o
«9)

w* (k) — gplk|
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4.2 DISPERSION RELATION

Proof. In Fourier space, monochromatic plane waves have the form

i(k) = a(k ) i(kx—w(k)t) . 6(]{) = B(k)e i(kx—cw(k)t)
{nl(k) oy (k)el = (ot (k) = B (k)ellkx—w®D), (4.10)

Solving these four equations of motion,

(—iw(K)a(k) = iy By GOb(k) + GOGY By (k)
(—iw(k)ﬁ(k))z—g(p p1) ©
(~ico(k)as (k)) = GG By (k) + (o7 G — ooy "By (GI9))?) B (k)
(—iw(k)B1(k)) = —gp1o1 (k)/ (4.11)
we have
_iw(k)B(k) icn (k) B (K)
(k) - g(P—Pl) ;K (k) - 901 (412)
P _ (GUEIGO GOGDE;! (7))
“Wpik) ) \GOGH B! pr'GY —ppr By (G2 ) \Bi(k))
(4.13)

The dispersion relation is

w?(k 0) p—
0 = det (Gh)B 'G0 — GGy By )

1p— 0 2(k
Gl Giz) By ! P1 1G£2) — PPy 1Bo 1(G£2))2 - wgp(l)

(4.14)

which after some algebraic manipulation can be simplified to Equation
(4.9). O

Equation (4.9) has two branches of solutions

20y — S —V)k[tanh(mlk]) ~— 5\
w* (k) = T4 tanh(n k) wi(k) = glk|, (4.15)
where 7 = % is the density ratio between the upper and lower fluid

domains. We associate the first root w?(k) with the wave motion of the
interface while the second root w? (k) with the surface mode.
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4.3 NORMAL MODE DECOMPOSITION

4.3 NORMAL MODE DECOMPOSITION

We perform a normal mode decomposition to diagonalise the quadratic
part of the Hamiltonian, which will be expressed as

HO = | GeP(D)E+ 12 + et (D) + ] dx. (@10
R

This will involve two canonical transformations, the first of which is the
rescaling

n g(po_ p1) (1) 8 8 n n
!/
5/ — 8(p—p1) 4 =M 4
M 0 0 g1 O m m
! 1
1 0 0 0 - ¢1 1
4.17)

After rescaling under this first canonical transformation and defining sym-
bols Q,(D), Qy(D) and Q.(D), we rewrite the quadratic part of the kinetic
energy

K® =3 | [FQuD)E +200u(D)E + HQD)E] A, @1s)

Reading the quadratic parts of the Hamiltonian in Proposition 4.1 and
rescaling by

1 1
= — 419
C g(p Pl)g gl ﬁg‘ol 61 ( )

it follows that these symbols can be rewritten in terms of the Dirichlet-
Neumann operators

Q:(D) = g(p—p1)GOG) B!
Q(D) = —gv/pr(p— p1)GOGY By (4.20)
Qe(D) =8GO (G +pG0)B;,
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4.3 NORMAL MODE DECOMPOSITION

where By = pGﬁ)) + plG(O). Using Equations (3.8), (3.23) and (3.24), these
symbols are

_ 8(p—p1)|D|coth(i D)

Q”(D) " pcoth(h;D)+pisgn(D)
_ 8V/pi(p—p1)|Dlesch(hi D)
Q(D) = pc;tr(hlll?)w)ﬁgn(l;) (421)
__ 8p1|D]|coth(h;D)+gpD
QC(D) - pcloth(th)+1p1sgn(D)'
Moreover,
GOGY + 6O
Qu+Q. =% (g ) (4.22)
as well as
201 — p)(G0)2 + oGV GO
\/(Qu—Qc)2+4Q§ _ 81 —p) BZ kel Vi (4.23)
The second canonical transformation is the rotation in phase space
I a- 0 b~ 0 1’ i
¢ 0 a0 b ||| _ |
7l sl PR B P il P R
01 0 at 0 bt ¢l )
where the symbols are defined as
QC(D) — Qa(D)
6(D) =
(D) Qu(D)
a*(D) = 2+9—2+9 4+ 62 o
B 272
+
(D) = ) (g4 /oy o) (4.25)

and a possible singularity in 6(D) is removed by the contributions from
the numerator.

Next we take inverses of the composition of these two transformations
to get

{17 - \/g(b;—m)y_ \/géjp_—pﬂyl,- {C =b*\/glp —p1)C — b~ /8(p —p1)Ca

"= e G = —atygpil o VERG

(4.26)
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4.3 NORMAL MODE DECOMPOSITION

The following lemma provides us with some key relations for our analysis.

Lemma 4.4. The following conditions on a* (D) and b*(D) hold

—b=(D)
+D>=%( Gy ) a* (D)
O+ (DI = (D) (0
at(D)b™(D) 4+ a~(D)b~ (D)_O.

at(D) =
(D)= (4.27)

Proof. We first verify that

VO VAL A+ 10VAT0
VA4 62— V4 + 62 2

and similarly for a= (D) = b™ (D). Next we check that

b=(a") = -1 (4.28)

2 2
(@) + ) 44+0%24+60vV4+602 4462—0v4+ 62 (4.29)

as well as

(0 — V4 +62)2 N R s
2044602 —0V4+62) 204+02+0V4+62)
(4.30)

()24 (b7) =

and lastly

0+ 4+ 62 0 — 4+ 62
4402404+ 62 4+92—9\/4+92

which completes the derivation. O

atht +a b = =0, (4.31)

We also note the even character or parity of the symbols a* and b*.
Lemma 4.5. The symbols of Qa, Qp, Qc, a* and b* are all even.

Proof. We first observe that Q,(D) has even character, since

_ 8(p—p1)|D|coth(mD) — g(p—p1)|D|
Qu(D) = pcoth(h1D) + p1sgn(D) — p + p1 tanh(hy|D|)’ (4.32)

Similarly, we calculate the remaining two symbols

Qy(D) = 8v/p1(p —p1)|Dlesch(hiD) _ g+/pi(p — p1)|D|esch(hi|D|)

pcoth(h D) + p1sgn(D) p coth(h1|D]) 4 p1

(4.33)
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4.3 NORMAL MODE DECOMPOSITION

_ 8p|D|coth( D) +gpD _ gp1|D| + gp|D|tanh(h|D|)

D) =
Q:(D) p coth(h1D) + pisgn(D) p + p1 tanh(hy|DJ)

. (4.34)

Since Q,, Qp and Q. are all even, sois § = QCQ;an and thus so are a* and b
as these symbols are in turn implicitly defined by 0 themselves. O

Before finding the quadratic terms of the Hamiltonian in normal coordi-
nates, we find the eigenvalues and eigenvectors of the symmetric matrix

Qa(D) Qu(D)
<Qb(D) QC(D)> : (4.35)

The eigenvalues are the roots of characteristic equation

‘ (Qa Qb

ol — a2 e
Qb Qc) /\I’ A (Qa + Qc)}\ + (Qan Qb)/ (436)

which agree with the solutions of the dispersion relation

g(1—9)|D|tanh(y|D]) 5, .
T+ ytanh( D)) 1PV =slbl (437

w?(D) =

Proposition 4.6. The eigenvalues of the symmetric matrix

Qu(D) Qu(D)
<Qb(D) QC(D)> : (4.38)

given by A < Ay are the internal and surface modes, w?(D) and w?(D),
respectively.

Proof. We directly calculate

MD) = 5 (@) + QD) ~/(Qu(D) ~ Q:(D)? +43(D)

_ 1g/D(1+ tanh(my|D]))  g|D| (1 (1 —29) tanh(hy|DJ))
2 2(1+ ytanh(hy|D))) 2(1 + ytanh(hy|D|))
_ g(1—1)|D|tanh (D))
1+ vy tanh(hy|D|)

(4.39)
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4.3 NORMAL MODE DECOMPOSITION

and
(D) = % (Qa( + Q.(D +\/ (Qa(D) — Qc(D))2 4-4Q5 (D ))
_ 8ID|(1 + tanh(m|D|)) g|D| (1 — (1 —27) tanh(i|D]))
2(1+ ytanh(h|D|)) 2(1 + ytanh(hy|D|))
=gID| (4.40)
to complete the result. O]

Moreover, we show the normalised eigenvectorsare (a=,b~)T and (a*t,b")7,

respectively.

Lemma 4.7. The eigenvectors of the symmetric matrix

Qa(D) Qb(D)
<Qb(D) QC(D)> (4.41)

that correspond to internal and surface modes, w?(D) and w?(D), are (a=,b~)T
and (a*,b™)T, respectively.

Proof. First we show that (a=,a")T lies in the kernel space of

Qu(D) -w*(D)  Qy(D)
( Q(D) QC(D)—wz(D)>’ (4.42)

which follows as

ai(Q — 2) + bin
f; QﬂngC at <2(Qa ~ Qo)+ %WQQ —Qc)? +4Q%> —4'B
n GO (GO 4 50O
_ % (gpl ( Blol + )(gG(O) —Qc(D)) - Qi(D)>
N (4.43)

and

7 Qy b (Q— w?) = PplQ”ngC 0t Qp—at(w? — Qu)

GOGY + GO
— gt <8P1 ( B101 ) +(Qa(D) —gG(O))>

=0. (4.44)
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4.3 NORMAL MODE DECOMPOSITION

Since the matrix is symmetric, the eigenvectors are orthogonal and it follows
that (a*,b™)T is the remaining eigenvector for the surface mode, which
completes the proof. O

Through these two transformations, we also write the equations of mo-
tion in normal coordinates. These variables are also canonical since the
symplectic matrix remains unchanged.

Lemma 4.8. Hamilton’s equations for transformed variables (y,C, p1, (1) is

u 0 1 0 0\ /6H 5,H
¢ [-10 o o||&H]| |&H

g m| o o o 1||s,H =J 5., H (4.45)
e 0 0 -1 0/ \6H 6, H

Proof. Since the change of variables matrix M,Mj is orthogonal and com-
mutes with J, it follows

U n ouH ouH
g ¢ | o0cH ocH
0 = (M2M;)0 = (M2M;)](M2M = ,
o (M2My) 0 n (M2M1)J(M2My) 5u H J 5, H
C1 ¢1 5€1H 5€1H
(4.46)
which completes the proof. O

Proposition 4.9. The quadratic part of the Hamiltonian is

H® = ;f [(w? (D) + p* + Gawi(D)0y + il dx.  (447)
R

in normal variables.

Proof. We calculate the integrand of the potential energy
1 . 2 1 2 _ 1 ? 1 2
280 =P +58pu = 1+ 5m
1 1
= 5@ +bom)* + 5 (avy +bam)?

1, 15,
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4.4 THE MOMENTUM

as well as the integrand of the kinetic energy
e g (S0 SO ()
el D@0 oo Ce L) (E)
D <w2(()D) wg?m) <§§1)

1 1
= 50w (D) + 501w (D), (4.49)
where w?(D) and w? (D) are the internal and surface modes. From Equa-
tions (4.3) and (4.18), we combine Equations (4.48) and (4.49) to get the
result. O

4.4 THE MOMENTUM

The impulse integral, or momentum, can also be written in both canonical
and normal coordinates. Since the Poisson commutator {H, [} = 0, it fol-
lows that the momentum is an invariant of motion that does not affect our
analysis in the Hamiltonian setting.

Proposition 4.10 ([CGS20]). In terms of the canonical coordinates, the
momentum [ has the form

1 hi+m
I:= le <pf Oxp dy + p1 J OxP1 dy) dx = — JR(C&XU + &10x11) dx,
—Q0

Ul
(4.50)

while, in normal coordinates, the momentum is

I=— | @+ Qo) a. (@51)
R
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4.4 THE MOMENTUM

Proof. In canonical coordinates,

I= J}R (p JWOO Ox¢p dy + p1 Lhﬁm Ox1 dy) dx
~ [ v (ax ( [ 4>dy> - sb(x,mt)(axn))

h1+7]1
+p1 <5x (J ¢1 dy) — ¢1(x,11,t) (0x1) +4’1(x/77/f)(5x77)> dx

U

U] hy+m o
=p LD Py .+, L Pyl

_ JIR [(Pq) —p1$1)(0x17) + p1d>2(ax;72)] dx
- J}R(Caxﬁ + G10x11) dx, @52)

where we recall { = p® — p1P; and §; = p1P»2. Next, using the canonical
transformation and Lemma 4.4, we express

I=- L(Caxﬂ + ¢10xi1) dx
== ﬁR [(67C—=b701) (b7 Oxp — b~ Oxpa)
+(at¢—a 1) (atoxp —a~oxpu) ] dx
= [ 1 @ e @ b g0
— (@b +amb7) 0+ ((bT)2 + (a7)?)Z0xp] dx

_ L{(C&xy + Qo) dx, (4.53)

which yields the desired result. O
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CUBIC TERMS OF THE
HAMILTONIAN

5.1 CUBIC TERMS OF THE HAMILTONIAN IN VARIABLES (7, #1,¢,&1)

We compute the cubic parts of the Hamiltonian in terms of canonical vari-
ables (1,11, ¢, &1), while we will transform to normal variables (, {1, u, 1)
in later sections. As the potential energy V is quadratic and does not con-
tribute any higher-order terms, the cubic part of the Hamiltonian is simply
the cubic part of the kinetic energy. Recalling that the kinetic energy K

1

K==
2

JIR EGuB'G(1)¢ — EG(n7)B ' Gial1 — 81GaB G ()¢
+ ¢ (pflez - PPI1G21371G12) G1dx
= ;f EGuB'G(1)E — 22G(17) B~ Graa

R

+ &1 (Pflez - PPl_lcle_lGu) ¢1dx
—: (1) — (1) + (1I0), (5.1)
where

(I) = 3 Sg 6GuB~"'G(17)¢ dx
(I1) = §r §G (1) B~ G1ad1 dx (5.2)
() = 1z & <p1_1G22 - PP1_1G21B_1G12) ¢1dx,

identify the first, second and third terms of Equation (5.1), respectively.

Proposition 5.1. The cubic part of (I) is

2
+p17 (DB3 G2 — o (G By G"g)?| dx. (53)

1 _ -
O =3 | [~en (DB6102 ~ (0~ pu)n (COB; L2y
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5.1 CUBIC TERMS OF THE HAMILTONIAN IN VARIABLES (77,71,¢, 1)

Proof. To calculate term (I), using the expansions of Propositions 3.1 and
3.2 from Chapter 2, we first expand the integrand in powers of # and #; at
order O(1,11)

GuB 60 = (61 + 617 + GiY) (5. - 5B ) (64 GY)
+0((1,m)P)
= Giy'By "G+ (61" + Gy )By GO + Gy By MG
— G By (oG + G + 0161 B GO + O(|(,11) )
=GB "6 + (1-pGY B ) (G + GItY) Gy !
+ 6By G6M (1 piGOB; ) + O (7, 71) )

(0) = (0) (0) (0)
_ GG p1G (10) , ~(01),G
=+ e e 5
oGO GO

LG =1L 0(|(n,m)P). (5.4)
By B,

+

We can simplify the terms

GO
(Gﬁ))’?cﬁ) - DWD)Bio

G(O)G(lo)G(O) B G0
P1 B, "1 "B, =P B,

GOp GgOp

= 0GB GGG By —

as well as

GO oGO G0 G0
15 Cn g =g (~GR G G

0
Bo By Bo

0 0
=M (0) M (0) (5.6)
PGy +01GO " Gy’ +p1GO)

and finally

pGi(l))G(l)Gi(l))

By By
%2) Gl
—11_(DyD — G(O)WG(O))BL;

= pGyy DBy "Gy DBy — Gy By G/ G VB (5)
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5.1 CUBIC TERMS OF THE HAMILTONIAN IN VARIABLES (7,171, ¢&,¢&1) 31

We can then use the self-adjoint character of the operators to simplify
1 -1
I) = E CGHB G(;y)gdx

=3 |, [e61V857G 0+ (o~ )26 6 OBy i) OBy e
— 012GODB; GO DB; ¢ 402G\ DB, GV DB, e
—p gc“))G<°>Bglmc§2)c<0>351¢} dx
f eGWGOB Iz dx
+5 | [-on (DBGIEY ~ (0 - pr)y (69871602
+p17 (DB; G2 — o (G By G09)%| dx + O(1(7, 1)), (58)
which completes the derivation. O

We move on to the second term (II) in our analysis.

Proposition 5.2. The cubic part of (II) is

m® = | [en(DB;GI0) (DB GYe)
+(p—p1)n(GVBy'G12) (GVB *1G§2>¢1>+pn(DG<°>Balg><DBalG£2>¢1>
+ (Gl GV B 9)(GLY'é1 — p(GLY 2By &) | dx. (5.9)

Proof. We expand the integrand G(17) B~ Gy, in powers of (17,71)

G(17)B™ G

1 1 1
= (G046 (5= B0 L) (6 + 6 + 68) + Oy )P

(0)
G(O)Glz LG Leo_colgmlcoo

BO BO 12 BO BO 12
GO
(G0 +6R") + 0 mP)
= GOGYB; " + (DyD - GOyGOB;1GY + OB Gy GY

12

_ 0 0 — 0 0 — 0
- GB; GGy - pG By (G nGYY — DyD)By ' Gyy

+0GOB GG By Gy — p1G VB ' DyDB; Gy

+p1GOB; GOyG BTG + O(I(n,m) ). (5.10)



5.1 CUBIC TERMS OF THE HAMILTONIAN IN VARIABLES (7,11, &, &1)

Next we group the third and fourth terms
0)p— 0 0)p— 0)  ~(0) p—
G(O)Ggl)Bo 1’7G£2) -G Ggl)Bo 1’7G§2)PG§1)BO !
— 01GOGYB;1cO6Y B, (5.11)
the second and seventh 7 terms
~ GGG Byt + p1(G)2By GO G By !
— —0GYGOB1GOGY BT, (5.12)
as well as the first and sixth 77 terms
DUDG§2) -pDGYBy ’7DG§2) = PDG&) By ’7DG§2) By', (5.13)

in which the variable # appears. Using these identities, we group all of the
terms that include # together

0) p— 0) p— 0 — 0) p—
(o1 — P)G(O) G{l)BO 1’7G(O) G§2) B, Y+ PG§1)DBO 1’7DG§2) By !
+pGODB; 4G DBy (5.14)

Similarly, using the relation (Gﬁ))Z — (G%g))2 = (G)2, we calculate the

terms in (II) that include the variable 7,

_G(O)G(O) 171G§1) —I—pG( )G() 0 171(G( ))23—1
PlG() Gy By 'mGy) GO Byt — pGOIGY) Byl (GJ3))?By . (5.15)

We can then use the self-adjoint character of the operators to simplify
(1) f £|cOB1GY + DB 1yDGY B!
+ (01 - p)GOGYB1GOGCY B, + oGO DBy G DB, !
+pGVGY By (G By — GOGY By Gl | e dx
- | gc<o>c§g>30—1¢1 ax+ | [on(DB;'c)e) DBy 62

+ (0= (GO B GO (G BTG &)
+py(DGVB;12) (DB Gy 1)

+ (G GUB ) (G e - (Gl By &) dx

+0((1,m)P), (5.16)

32



5.1 CUBIC TERMS OF THE HAMILTONIAN IN VARIABLES (7,11, &, &1)

which completes our proof. O
Lastly we turn to the third and final term (III).

Proposition 5.3. The cubic part of (III) is

1 _ _
@ = 3 [ [tor = oG85 Gl 27 - B (ce — (Gl 8y 01
1 _
= oD + (fl(p —p1)y (DB Gy 617 dx. (5.17)
Proof. We expand the integrand p; Gy — pp; 'GnB~'Gra

PflGZZ - PPI1G21371G12

1, 0 10 01
= E(G(z) + Géz - Géz )

P A0, A0 S0y (1T gy T (0) , ~(10) | ~(01)
Pl (G21 +G21 +G21 ) (BO BOB BO <G12 +G12 +G12 )
1

0 0 ~(0)p— 0
Y - Lo el +
1Y 10 01 — 0 0 ~(0)p— 10 01
=5 (G Gy )8y Gy - G By (G + Gy )

1
—(Gy” +GRY)
01

+ L6981 (p(GHY + G\) + 0GB G + O(| (7, m) ).

o 1
(5.18)

We proceed by simplifying the terms that include the variable # to

0 0 _ 0) ~(0) p— 0) b
G§2)17G§2)G(0)B0 f— Png) Ggl)Bo 1’7G(0) G%z) B, !
1

1 0
= (01— 0)GYGOB OGB! + £ GDB G DB (5.19)

o1
as well as those including 7,

1 1 _ _
EDmD—EjQ?—MGQY&SMNQ?—MGQV&S) (5.20)
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5.2 CUBIC TERMS OF THE HAMILTONIAN IN VARIABLES (y, #1,C, (1)

Again, one uses the self-adjoint character of the operators to get

— 1 -1 -1 -1
Y 1
() = 5 | &1 (oG~ por " GaaB Gz 1

1 _ 1
=35 f 1 <P1 1G§g) — PP 1Bo 1(G$))z> Grdx
R

1 _ —
+3 | [or=pm(cB 6 02 - L (ca - p(cly 2By a1

1
- Em(Dél)Z + Ff)l(p —p1)(DB; Gl 21)?  dx
+0((1,m)P), (5.21)

which completes the result. O

Adding the cubic parts of the three contributions, respectively, we find the
third-order terms of the Hamiltonian.

Corollary 5.4. In canonical variables, the cubic part of the Hamiltonian is
HO® = 1©® —@m@® + m®

1 2
AR CRENGHES )

_ 1 _ 2
o (GS)G(“BO - -(6lVe - p(cid)Eg 1@))
2
—py (D7 (G - G a))
4 0 21
+p17] (DBO‘16<O>§ - mDG%QBﬁ&) - plm(Dcl)z} dx
=: Ry 4+ Ry + R34+ R4+ R5, (5.22)

where we identify each term on the right-hand side to Ry, Ry, R3, R4 and Rs.

Proof. These identities follow directly from Propositions 5.1,5.2 and 5.3. [

5.2 CUBIC TERMS OF THE HAMILTONIAN IN VARIABLES (1, pi1,{, 1)

Having derived the cubic terms of the Hamiltonian from canonical vari-
ables (17,11, ¢, {1), we now convert it into normal variables (¢, {1, t, 41), by
examining R; for each j € {1,2,3,4,5} separately.
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5.2 CUBIC TERMS OF THE HAMILTONIAN IN VARIABLES (y, #1,C, (1)

In Ry, from Equation (5.22), we rewrite the factor GO By 1 (Gﬁ))(f — G%g) é1)
as

GOB 1 (GYe - GYe)

=(b+«/g(p p1)GOB;'GY +at /501G VB 1GY ) ¢
— <b‘x/g(p—pl)G(°)351G§(1’) +a”/gn1G VB, ?) O

= A1l — Bily, (5.23)

where symbols A; and B; are defined as

A= b"/g(o - p)GV B G +at /g GUB; G,
Bii=b"y/glp—p1)GVB Gl +a”ygoiGUB Gl (5.24)
Recalling the relation in Equation (4.26)

h= (b ), (5.25)
g(o—p1)

and applying Equations (5.22) and (5.23), we have
_ 2
Ri=-E2H f 7 (GUB (G- Glan)) dx
R

— _Z(;plm) IR(bJ“y —b ) (Al - Bi5)”. (5.26)

Similarly, for R, we calculate

1
cOGYBs 1z - EG(O) By (0G0 + 01G\)E = Al — Bols,  (5.27)

for symbols A, and B,
Ay i = —— 1 gG() (P1G§1 —I—pG )+bTr/g(0—p1)G 1G12f
v 8P1
1
By := a~¢GOB1(0,G\Y + oG B;'GY
2 N S (Pl 11 TP g(p—p1)G 12

(5.28)
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5.2 CUBIC TERMS OF THE HAMILTONIAN IN VARIABLES (1, u1,¢,{1)

From Equations (4.26), (5.22) and (5.27), we have

. 2
R,= -2 f m (G(O GOB; e~ E(Gﬁ])‘:l —P(Gg))zBolgl)) dx

(a~ iy —ap) (Aol — Baly)? dx. (5.29)

72\/891 R

Next, for Rz, we write
_ 0 0
DBy (GE - GY¢)

= <b+ g(p—p1)DB; G} +ﬂ+x/gﬁDBolG§3)> Z
— (b‘ g(o—p1)DBy G +a~ \/gp1 DBy 1G13)> &1

=: A3 — Bs(1, (5.30)
where symbols A3 and Bj are

As = b"4/g(p —p1)DBy G\ +a* /301 DB Gy,

By =b"\/glo—01)DB;'G\Y +a~/goiDB;'GY.  (5.31)

From Equations (4.26), (5.22) and (5.30), we also write

2
Ro=-2 | (B (Ge - 6iPe) dx
R

_ 4 f (b+ — _ 2
= p—b"py) (A3l — Bzly1)” dx. (5.32)
2¢/8(p—p1) Jr
We have, for Ry, that
-1 —1
DG B, ¢ + DG12 &

= <b+q/g(p—p1)DB01G(O) —aﬂ/gp DBy 1G12 > 4
- <b‘\/g(p—p1>DBo‘1G( /- *a ~v8p1DB, 'G ?)

=: Ayl — Bsla, (5.33)
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5.2 CUBIC TERMS OF THE HAMILTONIAN IN VARIABLES (1, u1,¢,{1)

where symbols A4 and By are defined as

Ay :=b"/g(p —p1)DB; G — pia*\/ﬁDBong)f
By:=b"y/g(p—p1)DB; G — ,i”_v@lDBong)-

Again applying Equations (4.26), (5.22) and (5.33), we calculate

2
Ry = plf 1 <DBO_1G(O)§+ pDG§2)Bg1§1> dx
2 Jr 1

= P | (bt b ) (Al — Balh)? dx.
2mJ]R( M ]/ll)( 4C 4@1) x

Lastly, for R5, we write

D¢y =: AsC — Bs(q,

where, in particular, we have

As = —\/gpa™D,  Bs = —,/gp1a D.

From Equations (4.26), (5.22) and (5.36), we deduce

1
Rs = —— D& )% dx
° 20 J]Rm( &

1 n _ 2
= - AsC — B dx.
o ) (A~ Bet)
Proposition 5.5. The cubic part of the Hamiltonian is
H(3):_PP1J btu—b Al —BZ)? d
IR ]R( p—b"p1) (Arg — Bil1)” dx
01 — + 2
- a pr—a Al — B dx
W R( 3 ) (A2l — Bala)

I L e
2\/8(P_91>J]R(b+y b

01 -
+2\/8(P—P1) fR(bW s

1 L - ,
+2p1\/gﬁfm(” p—a ) (Asg — Bs1)” dx.

) (Asg — Bs1)* dx

) (Asl — Bal1)? dx

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

Proof. This follows by adding together the contributions for each R; from

Equations (5.26), (5.29), (5.32), (5.35) and (5.38).

O
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THE HAMILTONIAN IN
RESCALED COORDINATES

6.1 MULTIPLE SCALE ANALYSIS

In this section, we review multiple scale analysis, specifically lemmas on
scale separation from [CGNS05], scaling transformation from [CGKO05] and
action on multiple scales from [CSS92]. These results measure the effect
of Fourier multiplier operators, and by extension Dirichlet-Neumann op-
erators, on long-wave scaling and they will be useful in representing the
cubic terms of the Hamiltonian from Equation (5.39) in rescaled coordinates.

One may interpret the following scale separation lemma as the homogeni-
sation of the fast oscillations due to short scale x at order O(eN). We say
that the short and long scales, x and X, are asymptotically separated.

Lemma 6.1. [CGNSO05] (Scale Separation Lemma) Let g(x) be a continuous
function that is periodic on the fundamental domain R /Z. Then, for any function
f(X) of Schwartz class S(R) and for all N, we have

1 1
f o(x) f(ex) dx = 1 ( f 2(x) dx) f FX)dX+0(N).  (6.1)
R € 0 R

Proof. This is proved in Lemma 3.2 of [CGNS05]. O

The spatial scaling transformation introduces the parameter ¢ into the
Hamiltonian primarily through its effect on Fourier multiplier operators
m(D), which we recall is defined as

1 ikx
m(Da)(F()) = = | m(k) (Fuf) )

1 ; /
= 5= ff e =) (k) £ () d’ dk. (6.2)
R2

With the above definition, the next lemma describes the transformed Fourier
multiplier after scaling.
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6.1 MULTIPLE SCALE ANALYSIS

Lemma 6.2. [CGKO5] Define f(X) = f(x) as the scaling transformation on
X = ex. Then the transformed Fourier multiplication operator is

(m(Dx)f)(x) = (m(eDx)f) (X): (6.3)

Proof. Using the expression for the Fourier multiplier, we calculate

(m(D)F)(x) = 5 f | ety £ i

JJ - VF(X'/e) dX' dk
f f KX=XD 1 (eK) £ (X') dX dK

= (m(sDX)f> (X), (6.4)
which yields the result. O

Next we state a lemma on the action of Fourier multiplier on functions
of multiple scales. It is proven in Theorem 4.1 and extended in Appendix
A2.1 of Craig, Sulem and Sulem [CSS92] for general pseudo-differential
operators. The result assumes that the Fourier multipliers have the property
that, forall y € ZT,

-
2

o (K)| 5 (1+ [kP) (65)
foreach0 <j <7

In the following formulation, m(Dy) acts on the monochromatic oscillatory

form k0¥ f (X) with a resulting Taylor expansion about wavenumber k.
When truncated at order O(eV), it acts as a differential operator of order N.

Lemma 6.3. [CSS92] Let m(D) be a Fourier multiplier as defined in Equation
(6.2) that satisfies Equation (6.5). Then, its action on multiple scales is

(m(Dy) (" F(X)) = &% (m(ko + eDx)f) (X), (66)

and has an asymptotic expansion

v
(m(Dx) (" F(X —elkox(z Dko)DLF(X)) +OEN ). (67)
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6.2 LONG-WAVE SCALING AND MODULATIONAL ANSATZ

Proof. We calculate

(m(Dy)(e™* f(X JJ (=) 4kox" (k) £ (ex”) dx’ dk

zkox

_ U O L (ko + K F(XY) X! dK

lkx ~
_ U X (ko + eK') F(X') dX' dK’

= eikox (m(ko +¢eDy) f) (X). (6.8)
Applying the approach in Theorem 4.1 of [CS592], it then follows that
(m(ko +eDx)f) (X)
= iﬂ f f XXX (ko + eK) f(X') X’ dK
/ 1 - . ~
” e ( 7 () (ko) (eK) + RNH(eK)) (X') dX' dK
j=0

v
ZST (ko) Dx f(X) + O(eN*1), (6.9)

since the Taylor remainder term is of order

1 _ 4\N
Ry (eK) = L (1 Nf) mWNF (ko + teK) (eK)NT1dt ~ O(eNT1), (6.10)

which completes the proof. O

6.2 LONG-WAVE SCALING AND MODULATIONAL ANSATZ

We assume the scaling regime

X=ex, ei(X)=p(x), {(X)=(() (6.11)

to describe the internal modes of the long waves. We prescribe asymptotics

R‘

—~ekl, e1:=e 0«1,

LN
h A
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6.2 LONG-WAVE SCALING AND MODULATIONAL ANSATZ 41

where a is are the amplitude of the internal wave, A is the wavelength of
the surface wave and kj the wavenumber of the carrier wave. We will also
choose 0 < 4 < 1.

We express the surface modes as quasi-monochromatic waves, which obey
a modulational Ansatz given after transformation by

{.ul(X,t) = \%w%/Z(Dx)(vl(X/t)eikox +71(X,t)e_ik0x)

; . 6.12
01 (x, t) = %wl—l/Z(Dx) (Ul (X, t)e’kox _ v—l(X’ t)e_’kl)x) ( )

in new coordinates (1, (1,v1,71), where v represents the envelope of the
surface mode.

6.2.1 Asymptotic Expansions of Symbols near k = 0

Using Lemma 6.2, we find the asymptotic expansion of w?

¢(1— v)|eDx| tanh(h;]eDx]|)
1+ v tanh(h1eDy)

1
(1= 7)leDx] (nleDx| - 5 (neDx]? + O(&)

w*(eDx) =

1
(1= leDs] + 72H1eDxf - 7(72 - DDA + O
2g(1— ) |Dx[* — gy (1 - 7)h3|Dx[?
1
+etg(1=7)(v* = HMIDx[* + O (&)

=&

2)(2) 2)(3) 2)(4)
—. 2 (Wz) D2 + 3(“’6) D§<|DX|+€4(wzi D%
+0(e), (6.13)

where ¥ = %1 is the density ratio. The first three coefficients in the asymp-
totic expansion of w?(eDy) are

(w?)@ =2¢(1—7)hy
(@?)®  =—6g7(1—7)h3 (6.14)
(W)W =24g(1—7)(+* = K.



6.2 LONG-WAVE SCALING AND MODULATIONAL ANSATZ

Next, from Equation (4.25), we have

0
at (D) = VP PGy (6.15)
V(062 + (201 - p)GO) (G + GO)

and the Taylor expansion of the symbol is

a*(k):mmh s CSCh ) oK), 616)

coth(h h2 (h1k)

By Lemma 6.2, when at (D) is applied to the long-wave function py(x) =
el (X), where X = ex,

a*(Dy)u = ea™ (eDx)ji(X)
= ey/1 — yji — e2y\/1 — vy | Dx|ji + O(€°)

= ¢((a") O +e(a™)V|Dx) i + O(). (6.17)

Similarly, we have from Lemma 4.4,

+ _ P Q4(D) + Q.(D) o+ _ Pl(Gi(l))‘i'G(O)) at
rb= < (D) ) )= Verlo— )Gy

(6.18)
and thus b* (D) acting on 7i(X) is
b (Da)pt = eb* (eDx)fi(X)
= &) [T (14 melDx)yT=7(1 = el |Dx]) + O(€)

= ey/7fi + €/7(1 - 7)l|Dxlfi + O(€)
= e((b1) O + ")V |Dx|) i + O(). (6.19)

The coefficients defined in Equations (6.17) and (6.19) are

@) =T, (@)D = —9/T=7h 620)
1) =y, <b+><>:ﬁ< —)h1. ‘

6.2.2  Quadratic Terms of Hamiltonian in Rescaled Coordinates
The next step is to substitute these scalings and the modulational Ansatz

and perform the expansions of the Hamiltonian. This i{lvolves first replac-
ing multiplier w(D) acting on long-scale functions f(X) = f(ex) with
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6.2 LONG-WAVE SCALING AND MODULATIONAL ANSATZ

w(eDx) and wi(D) acting on multiple scale functions of x and X with
w1 (ko + €Dx). Second, one finds the Taylor expansion of these Fourier mul-
tipliers using Lemma 6.3 and then, third, truncates at order (’)(84) to obtain
the expansion of the quadratic part of the Hamiltonian.

Now we write the leading, quadratic terms H® in the Hamiltonian in
rescaled variables (, i, v1,71) from our Benjamin-Ono and modulational
regimes.

Lemma 6.4. The quadratic part of the Hamiltonian in rescaled coordinates is

2)(2) ~ 2)(3) o ~
H? — J}R [—s(w ) (DX€)2+82(W1; ¢(DXIDx(Z)

NG PO
( 4; C(D§<§)+€H2+;lw1(ko)|vl|2

"
k
+ ) (ko)71 (Dxon) + €} “Jlé 0)

+ €3

71(D%v1) | dX + O(e).  (6.21)

Proof. Starting from the quadratic terms of the Hamiltonian H(?) given in

Equation (4.47), and applying Lemma 6.3 and Equation (6.14), we calculate

% JIR [Cw?(Dy) + p?] dx

1 ~ ~ o7 4X
=5 || Bwrepx)d+ en?) 5
R £
_1 —-17 ﬁ 2 (Z)DZ ﬁ 2 (S)DZ D
R
84

+ 51 @DK)E 4] dx + 0

2\(2) - 2\(3) ~
- [J“’ e 03d) + ) HpRipwd)

(6.22)

pAY
-
TS
DX
+
™
=2
o
| I
[
<
+
G
o
=
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6.2 LONG-WAVE SCALING AND MODULATIONAL ANSATZ

Next, applying Lemmas 6.1 and 6.3, as well as our modulational Ansatz
from Equation (6.12), we calculate

5 | [t (Doz + 48]

1 2 ; . ' '
— E f [ o %(Ulelkox - U—leflkgx) (C(Jl(Dx)('U]elkox o U—lefzkox))
R
e, ik K ik dX
+ El (01" + e ™) (w1 (Dx) (01" + Tre™ °x>)} e
1 &2 .
= E ® — i(—vlwl(—ko—f—SDx)Ul —Ulwl(k0+€Dx)Ul)
2
+ ;1 (v1w1(—ko + eDx )07 + T (ko + sDX)vl)] dX + O(e3eV)

1 2¢e 2
= 5 [, [Perten (ko) + et (-ko)Dx + St (ko) DR ox
R & 2
2 2
171(601 (ko) + 8601 (ko)DX + %w (ko)D2 )01] X + O(S 81)

€

® |

_|_
€2 _ eeqwi (k
= JJR [;w%(k0)|vl|2 + efwf (ko)T1(Dxv1) + 121(())01(13%(01)] dX
+ O(&%€3). (6.23)

Combining Equations (6.22) and (6.23), we get the result. O

6.2.3 The Momentum in Rescaled Coordinates

We calculate the momentum I in rescaled coordinates (5, i, v1,07).

Lemma 6.5. The momentum I in rescaled coordinates is

o~ N &2 &2 o .
I = —J 1e§(DXy) — ?1](0|Ul‘2 — 31 [(DX01)01 + Ul(Dle)] dX

+ O(e3eM). (6.24)
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Proof. Applying Lemmas 6.1 and our modulational Ansatz from Equation
(6.12), we calculate

I=— f (Q0upt + Crdun) dx
R
2

~ o & € .
= — JR [sé(&xy) — %ko|7)1|2 + i [01(5)(01) — 01((%(01)] dX + O(S%SN)
N PITRS T
= — JR 18@(DX],L) — ?k0|01| — E [(Dle)Z)l -+ Ul(Dle)] dX
+ O(e3eN), (6.25)
completing the proof. O

6.3 CUBIC TERMS OF THE HAMILTONIAN IN RESCALED VARI-
ABLES

In view of Lemmas 6.1, 6.2 and 6.3 from the section on multiple scales, we
focus on calculating the relevant terms in the cubic terms of the Hamiltonian
H®) in terms of rescaled variables (H, 5, v1,71), which are later used in the
derivation of the Benjamin-Ono and Schrodinger coupled system. In this
section, we prove the following proposition.

Proposition 6.6. The cubic part of the Hamiltonian H®) in rescaled vari-
ables is

H® = J}R [SzKﬁ(DXZ)Z + 2 (ki + k20x{) |01 * + K371 (| Dx | Dx{) (Dx{)
+ &€ (kafl + x5(0x{)) [01Dxv1 + B1(Dx1)]
+ ee2 (ke (| Dx|fi) + x7(|Dx|0xQ) ) |01 |* + €k (|Dx| ) (Dx{)?| dX
+0(eh), (6.26)

in rescaled variables (i, 5, v1,771), where k and xj, forje{1,2,3,4,5,6,7,8},
only depend on physical parameters g, i1, p and p;. Their precise expres-
sions will be given in terms of heretofore undefined symbols in the proof at
the end of Section 6.3.
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6.3 CUBIC TERMS OF THE HAMILTONIAN IN RESCALED VARIABLES

6.3.1 Relevant Cubic Terms of the Hamiltonian in Variables (u, u1,, (1)

The integrands of the relevant terms in Equation (5.39) are of the form

) g
Dy )p)(mz(Dx)Z1)? (6.27)
D )(m3(Dx)G1)

as the other terms can be omitted by the following application of Lemma
6.1. More specifically, in the scaling regime given by Equations (6.11) and
(6.12), the cubic terms of the Hamiltonian H® with integrands of the form

=
N—
=
RS
N—
—
3
N
—
)
=
N—r
o~
—

(m1(Dx)p1) (m2(Dx)2)?
(m1(Dx)p1) (m2(Dx)C1)? (6.28)
(m1 (D)) (m2(Dx)Z) (m3(Dx)C1)

are negligible, that is the integrals are of order < eV for each N.

Applying Lemmas 6.1, 6.2 and 6.3, we calculate for all N that

f]R(ml (Dy)p1)(ma2(Dy)Q)? dx
- JR (jli(ml“’i”)@x) (o1(X, e +vl(X,t)e”‘°x)> (m2(Dx)0)* dx

S| e (me}/) (ko + eDx)or(X, 1)) (ma(eDx))?dx + e

V2 IR
-2 (ko f o ez'koxdx) jR ((m}’?) (ko +eDx)o1 ) (ma(eDx)E)?dX

+c.c. + O(e1eN) < O(ereV). (6.29)
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6.3 CUBIC TERMS OF THE HAMILTONIAN IN RESCALED VARIABLES

Similarly, we find the asymptotics of integrals of the second type

f<<>><<>a>x

< (m w}/z o) (01(X, t)ekox 4 77(X, t)e‘ikox)>

2
. <ﬁz (mzwl_l/Z)(Dx)(m(X,t)eikox —m(X,t)eika)) dx
_e3 . .
2;1 (e’kox ((m1w}’?) (ko + eDx)v1) + e~ 0% ((mywi’?) (—ko + sDX)le))
. <ezk0x((m2w1—l/2)(k0 + EDx)Ul) . efikox((mzwl 1/2)(_k0 + EDx)ZTl)>2 dx
< O(e1eV), (6.30)

since after simplification the only exponential terms to appear in the inte-
grand are e=%0¥ and e*3%0*, Lastly, we calculate

JR<m1<Dx>y><mz<Dx>c><m3<Dx>a> dx

— jR<m1<Dx>y><mz<Dx>é>
<\f1 (maewn) V(D) (00 (X, Peto* —m<xft>e""‘°">) dx
B % f]R e (11 (eDx ) i) (m2(eDx)) ((macw1) 72 (ko + eDx)v1 (X, 1))

+cc. < O(greV). (6.31)

We have reduced the cubic part of the Hamiltonian to the relevant terms,
where we have eliminated those that are negligible by Lemma 6.1. This is
done methodically for each R;, j € {1,2,3,4,5} as defined in Equation (5.22).
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Corollary 6.7. In the Benjamin-Ono scaling and modulational regime, the cubic
part of the Hamiltonian H®) given in Equation (5.5) is

H®)

- [(’)_m (67 (A1) + (07 ) (B1g1)* + 2(b™ i) (Aig) (Bida) | dx

g(p—p1) Jr
- 25;7 [(a" 1) (A2)? + (@ ) (Bafa)? + 2(a™ puy) (Aa) (Bal)] dx
ZW f
zm J
2.01\/87

+ h.o.t.
=:R1+Ry+ R34+ R4+ R5+ h.o.t. (6.32)

1) (AsZ)* + (at 1) (BsC1)* +2(a™ p1) (Asg) (Bsr) ] dx

in normal variables, where we now relabel each R; term from Equation (5.22).
Proof. This follows directly from Proposition 5.5 and from our calculation

of the negligible terms. O

6.3.2  Action of Fourier Multipliers on Multiple Scale Functions

By Corollary 6.7, the first, second and third terms in the integrand of each
R; in Equation (6.32) are of the form

(R(D)&1), (6.33)

respectively, where P (D), Q(D) and R (D) are all Fourier multipliers. In
the first two propositions, P (D) will be either a* (D) or b" (D), whose
expansions at k = 0 are given in Equations (6.17) and (6.19). The following
three propositions will allow us to expand, in powers of € and ¢, terms of
each form that appears in Equation (6.33).

Proposition 6.8. Let P(D,) and

Q(D,) = QW(D,)Dy + Q®(Dy)|Dx|Ds, (6.34)

1)(AsQ)* + (b ) (Bsl1)* +2(b~ 1) (Asg) (Bsl1)] dx

1) (AsL)* + (b7 ) (Bal1)* +2(b 1) (AsQ) (Baln)] dx
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where

QV)(eDx) =: QU + QU |Dx| + O(¢?) (6.35)
for j € {0,1}, be Fourier multipliers. Then,

(P(Dx)u)(Q(Dx)])?
= PO (QU)2i(Dx{)?
+ePW(QUD)2(|Dy|fi) (Dx{)?
+2¢4P© Q19 (QUM1))ji( Dx{) (IDx|Dx{)
+264P 0 Q(10) 920 5Dy 7) (|Dx|Dxl) + O(5). (6.36)

Proof. By Lemmas 6.2 and 6.3, we expand

(P(Dx)u)(Q(D:)g)?
= (EP(SDx)ﬁ) (EQ(l)(GDx)ng—i— EZQ(Z) (€Dx)|Dx‘DXg)2
= (P95 + 2PV |Dyf)
- (e2(QMM)*(Dx{)* +2¢° QM) (Dx () (V| Dx|Dx{)
+267Q10 QR0 (Dy ) (IDx|Dx?))
+O(&%), (6.37)

which after expansion yields the result. O

Proposition 6.9. Let P(D,) and R (Dy) be Fourier multipliers with R either
even or odd. Then,

(P(Dx)p)(R(Dyx)21)?
= (—-1)/eed PO (R?w; ) (ko) il
+ (1) PW (R2wi ) (ko) (IDx|71) o1

e2¢?

+ Tlp(o)(szl_l)'(ko) [01(Dxv1) + (Dxv1)71] + O(%])  (6.38)

with j = 0if Risevenand j = 1if R is odd.
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Proof. By Lemmas 6.1, 6.2 and 6.3, we expand

(P(Dx)p)(R(Dx)Z1)®

= (eP(eDx)f) (%(Rwl—l/z)(sDX)(vleikox _ greihory)?

—eg? ,
= =L (P(eDx)i) (M7 (Rawp/2) (ko + eDx)on

_ —ikox(Rw—l/z)(_kO_|_8DX)U—1)2

e (P(eDx) ) ((Rwy %) (ko + eDx)v1) ((Rewy /%) (—ko + eDx)o1)
+O(eN)

= et (P + eP|Dx|fi)

(R %) (ko)vr + e(Rewy 1/2) (ko)Dxv1)

((Rw 1/2 (—ko)71 + e(Rw;/?) (—ko) Dx71) + O(e%€3),  (6.39)

which after expansion completes the proof. O

Proposition 6.10. Let P(Dy), R(Dy) and

Q(Dy) = QW(Dy)Dy + Q@) (Dy)|Dy|Ds, (6.40)
where

oW (eDy) =: QU + QUM |Dy| + O(e?) (6.41)
for j € {0,1}, be Fourier multipliers with P even and R odd. Then,

(P(Dx)p1)(Q(Dx)&) (R(Dx)1)
—eeg QU0 (PR) (ko) (0x0)[01]* — %61 (QUV) (PR) (ko) (IDx[0x) [on
- 828%9 200 (PR) (ko) (|Dx|xE) o1
- ﬁQ(l’o)(7373),(k())(axg) [01(Dx71) + (Dx01)77]
+ O(¢7). (6.42)
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Proof. By Lemmas 6.1, 6.2 and 6.3, we expand

(P(Dx)pu1)(Q(Dx))(R(Dx)E1)

= (%(Pw}/z)(er)(vleik”x +7e”"%)) (Q(eDx)¢)

LG
&2
51( (Pw}’?) (ko + eDx)(01)) (Q(eDx)Z) (Rw;?) (—ko + eDx ) (1))

(’Rw;lm)(ED )(Uleikgx _ U—lefikgx))

~

ij((Pw%”)(—koJrer)(m))( Q(eDx)¢) (Rwy'/?) (ko + eDx) (v1))

+O(5N)
)
2
&g
2
2
1

™

((Pawi’?)(ko)or) (6@ 0xE) (e(Rewy /) (ko) Dxo1)

[¢2)

2
2 ~,
- 51 (e(Pwi’?) (ko) Dxo1) (@M ox ) ((Rewy/?) (ko) D7)
+0(e%), (6.43)

which after simplification yields the result. O

6.3.3  Cubic Terms of the Hamiltonian in Rescaled Variables

Using Lemmas 6.8, 6.9 and 6.10 and the above equations, we calculate the
contributions of each R]' to the cubic part of the Hamiltonian truncated to

order O(e*).

Proposition 6.11. The cubic terms in the Hamiltonian from R; simplify to

Ri=— VP NS P e o) Bl Y hotln P
+26%€5 (b)) (Biw; ) (ko) (IDx i) o1
+e26 (b)) (Biwp?) (ko)iE[(Dxo1)71 +o1(Don) | ==
+ O(eh) (6.44)

in rescaled variables.

i ((PR)(ko)|v1]?) (6@ 0x + e2Q1V | Dy|0: + 2 Q3 (|Dx|0x{))

((PR)(ko)[v1[*) (6@ ox + e2Q1V | Dy|0x + €2 Q30 (|Dx|0x{))
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Proof. From Equation (6.32), we have

Ry — _P—Plp (b — b 1) (AL — Bilh)? dx
1

24/8(p—p1) Jr
= PP [0t (A0 + (0T ) (Bigr )
24/8(p —p1) Jr
+2(b7 1) (A1Q) (B1Z1)] dx + O(eV), (6.45)

Using the relation, (Gg)) )2 — (G{g))z = (G))2, we simplify the symbols .A;
and Bj. The symbols for the first term simplify to

+ /o071 0)
Al — a gp( 11 +G ) G(O))Z (646)

- gz) (PG§1) +01GO)

and

B, — 721G + (201 —p)GYY)
VP —pP1Bo

Also, define A7 =: AgZ) |Dy [>T = €2A§2)D§(E, where

GO, (6.47)

A®) = a*ygpi(Giy + G ") | (6.48)
Gy (0G1y +p1G©)

Since Agz) and b+ are even, we apply Proposition 6.8 for P = b+, Q1) =
and Q1) = Agz) and deduce that

(b7 1) (APD)? ~ O(e). (6.49)

Next, applying Lemma 6.9, we expand the first cross-term where B is even

(b ) (Br21)?
:88%(b+)()(31w1 ) (ko) filv1|?

+€2€%(b+) (’DX“")( 1‘”1 )(k0)|v1\2

2.2
881

() Ofi(Biwi ) (ko) [(Dxv1)71 + v1(Dxo1)] + O(€%). (6.50)
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To expand the last term in the first integrand, first observe that B; is even
— not odd - and so Proposition 6.10 is not applicable. Rather, applying

Lemma 6.3 and noting o) = Agl) = 0, the cross-term is

(b™p1) (A12)(B11)

2 . .
= —%(b‘w%/Z)(D,{)(vlelkox + c.c.)(Agz)Dig)(Blwl’l/z)(Dx)(vle’kox —c.c.)
2 ~
= + 1 (AP (eDx)DEE) (0™ w}/?) (ko + eDx)o) (Brewy /%) (~ko + eDx)77)
2
€ ~
- 2—11 (82./452) (eDx)D%Q) ((b~wi’?)(—ko + eDx)71) ((Biw; %) (ko + eDx)v1)
+ O(e3eN)
e @ 2\ [(h—rol/2 -1/2
= - (A7 (eDx) D58 [(b7 %) (ko) (Brewy %) (—ko)
— (b7 w}"?)(=ko) (Biwy /%) (—ko)] + O(e%]) < O(e%7). (6.51)
Combining terms, the proposition directly follows. O

Proposition 6.12. The cubic terms in the Hamiltonian from R, simplify to

R = i? 26} (a*) ) (B3eor ) (koo P
+ 2% (a ) (B3w; ) (ko) (| Dx ) o1
+ 26 () ) (B ) (ko) [(Doy )i + (Do) |

+O(eh) (6.52)

X
3

in rescaled variables.

Proof. The proof is similar to that of Proposition 6.11. Again we reduce the
symbols A, and B; to

_ atg(p—p1) (0)y2
A = e ) 653
B, -8 (G§?)+G“)(pG<°>+plG§1)) (o= p1)G§g))G(o) (6.58)
3(p—p1) (0G1} +p1G®) '
and define A, =: A§2)D§§ = €2A§2)D§(Z, where
AP = glp—p1) (6.54)

VEP(pGY +p1GO)
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A direct application of Lemmas 6.8 and 6.9 informs us that

(a"p)(A0)* ~ O(&), (6.55)

(a*p) (B201)? = ek (a™) O fi(Biwy ) (ko) [on |2
T

+ e (%) VD) (Biw; ) (ko) [on
2.2
+ %( +)(0)ﬁ(3%w1—1) (ko) [(Dxv1)1 + v1(Dx1)]
+ (9(838%), (6.56)

and lastly, similar to our calculation in Ry, we have

(4™ 11) (A20)(Bal1) ~ O(€¢7). (6.57)
Reading R from Equation (6.32) and combining terms, we get the desired
result. =

Proposition 6.13. The cubic terms in the Hamiltonian from R3 reduce to

R3 = 2¢ ( b+ (33“’1 ) (ko) filvr|*

4\/ p plf
+2¢%63 (b)) (B3ewr ) (ko) (|Dx|71) [o1]?
+26 (b)) (B3wi ) (ko) ji [(Dx01)71 + v1(Dxo1)]

~ dX
+4§£A?mw1%meDﬂ@@wﬁ}zf+0@ﬂ (6.58)
in rescaled coordinates.

Proof. We reduce the symbols Az and B3 to

ot yzp1(GV+GO)
A?’ __()gp (%1 ()DG(O)
Gy (pG]}o)er 1GY) ) (6.59)
_ /81 GY 4 (201-p)Gyy)
B = N/ —

and define A3 =: A§2)|Dx|Dx§ = £2A§2)|DX|DX5, where

4@ _ a’\/3p1 (G} i '+60) ‘ (6.60)
~GY (oGl +p1GO)

Again, applying Propositions 6.8, 6.9 and 6.10, we get
(071)(As5)* ~ O(€) (6.61)
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as well as the two cross-terms

(0" 1) (B3g1)? = —eet (b7) O (B3w;™) (ko) ilvr |2
— ¢ 2( )W (|DxlfE) (Biw; ™) (ko) v [

(W) /(B3w; ) (ko) i [(Dx©1)71 + 01(Dxo1)]

+ O(e 3¢2) (6.62)
and
(b_Vl)(A3C)(B351>
= —e23 (AL |Dx|ox{) (7 Bs) (ko) o1 > + O(£63). (6.:63)
Combining terms, the result directly follows. O

Proposition 6.14. The cubic terms in the Hamiltonian from R4 simplify to

Ry O (A5 (Dx{)?

— P Bt
INE e Jo
+254(b+)<1>(A“'°>)2(|Dx|ﬁ)(Dx5>2
+ 4t (b)) @ A 40D ji(|Dx|DxC) (Dx{)

—2ee2 (b)) O (B ) (ko) fifor [ — 26263 (b)) (Biw; Y (ko) (| Dxc|7i) |01
— 4¢3 ALY (07 By) (ko) (x0) |01 [2 — 4622 ALY (07 By) (ko) (|Dx|0x) |01 2

— 23 (bT)0 (2 1) (ko)fi[(Dv1)v1 4 01(Doy)]
+ 4*(p™) O )A zo)ﬁ(sz)(\DﬂDXg)
— 423 APV (b7 By) (ko) (|Dx|0x ) 01 2

28 G AL (07 B (ko) (2x0) [ (D21 )t + 01 (Do) | 22
+O(eh) (6.64)
in rescaled coordinates.
Proof. We define
Ay = A'D, + AP DD, (6.65)

and read the symbols

AS) = —£a+4/gplBalG£g) (6.66)
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and
2 _
AP =3 /g(p— p1)By !
Applying Proposition 6.8 with P = b, oW 51 and 9®)
compute

(0" 1) (AsL)?
E(b%) O (A8")2i(Dx{)?
+s<A< D2((0") D Dxfi) (DxE)?
+264(07) O ALY ATV ji(Dx) (IDx|Dx)

+ 264 (b1) @AM AP 5 (Dx) (IDx|DxE) + O(E).

Next, we apply Proposition 6.9 to get

(b" 1) (Bal1)?
= —se%(b*)(o)ﬁ(lgfwfl)(ko)|771|2

e2e3 (b7) W (Biw; ) (ko) (IDx|fi) |01
881
2

and lastly, by Proposition 6.10, we calculate

(b7 1) (Aa) (Balh)
= —ee3 A (b7 By) (ko) (x0) |01 2
262 AU (b By) (ko) (IDx|0x) |01 ]2
— 22 APV Dx|0x) (b~ By) (ko) v

- ﬂA ") (b= By)' (ko) (6xZ) [(Dxo1 )71 + 01 (Dxor)]

+O(s e3),

which completes the proof.

(b)) Ofi(Biw™) (ko) [(Dxv1)71 +v1(Dxor)] + O(e%e

(6.67)

AP

A7, we

(6.68)

%), (6.69)

(6.70)

O]

56



6.3 CUBIC TERMS OF THE HAMILTONIAN IN RESCALED VARIABLES

Proposition 6.15. The cubic terms in the Hamiltonian from Rs simplify to

! 3at (L0)y2~ 2
491\/gﬁfm [28 a"(0)(As )7 (Dx{)

+2¢4(at) D (A2 (|Dx |71 (Dx{)?
+4¢* (at) O ALY AT (1D |DxE) i (DxE)

—2¢e2 () O (B2wih) (ko) o1 [ — 2€2€2 (a7) V) (B2 Y) (ko) (| Dx| ) o1 |2
— 4¢3 AN (0™ Bs) (ko) (Dx ) [v1 |2 — 4622 AU (a7 Bs) (ko) (|Dx|0x) |01 ]

— 262 (a*) O (Bsw; ) (ko) fi[(Dxv1)71 + v1(Dxo1)]
— 228 AL (0 Bs) (ko) (2x0) [(Dxo1 )71 + o1 (Dxen)] | 5
+O(e*) (6.71)

in rescaled variables.

Proof. First define As := Aél)DX + Aéz) |Dx|Dx, where
ALY = —gora* (D) (6.72)

and AéZ) = 0. Then, applying Lemmas 6.8, 6.9 and 6.10, we simplify the
terms

~

(a*p)(As)? = € (a*) @ (A (0))%(DxC)?
+et(at) D (AL (|Dx i) (Dx)?
+2¢4(a ) O AN ANV (DX ) (IDx|Dx)
+0(e), (6.73)

)2
)2

(a7 p)(BsC1)?
= —ee2(ah) Ofi(BEw ) (ko) 1]
— &%t (a") M (B3w; ) (ko) (|Dx|ft) o1
2.2
1

— @) O (BRwp ) (ko[ (Dx01)77 + 01 (Dxon)] + O(€%€3),

2
(6.74)
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and lastly

(ﬂ_ﬂl)(A5§)(35§1)
—eed ALY (a7 Bs) (ko) (Dx{) o1
— 28 A8 (a7 Bs) (ko) (IDx|0xE) [0n
- ﬁA ") (4~ Bs)' (ko) (0xZ) [ (Dxv1)77 + 01 (Dxon)]
+ (’)(8 e3), (6.75)

which completes the proof. O

Adding all of these contributions from each R j term together, we find the
cubic part of the Hamiltonian truncated at order O (84) in rescaled variables
in the Benjamin-Ono scaling regime.

Proof of Proposition 6.6. This follows directly from Propositions 6.11, 6.12,
6.13,6.14 and 6.15.

We group the relevant terms of the cubic terms of the Hamiltonian H(®)
from Equation (6.26), writing the coefficients explicitly

_ P1 1\ (0)( 4(L0)\2 1 8 (0) 1 4(L0)\2
K = b A + a A
g(p—pl)( ! 201y 5"
_ g(1—7) ) (6.76)
2\/p1

Ky = _;ﬁ(“)(o)(lﬁwl—l)(ko) +% pgl(”+)(0)(l5’§wfl)(k0)

t 5= O By ) ko) — 5 (0") O (Bl ) (ko)

slo=p1) glo—p1)
_ 2p1\1/(%(a+)(0)(852)w1_1)(k0>/ (677)
K :—‘071 1) — B 1 1) -
’ g(P—Pl)A4 (0)(67B4) (ko) leAE’ (0)(a™Bs) (ko)

— V(b By) (ko) + Y—"(a" Bs) (ko), (6.78)
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(1/0) A(lrl)

1
K3 = 01 (b+)(O)AS’O)(Af’O)—|—A§1’1))—|— { {

glo—p1) Plx/gﬁ(a

_ P1 g1—7) [ +/8(1—9)
BV T M ( NG 7h1>

— \/ﬁ<—\/gm(1—v))<\/gpl(1—7)7h1>

+)(0)A

P11/8P1
_ /8=y 679
N ,
Ky = _\/Z\_F?(b+)(0)<8%wl—l)/(ko) + ;/j%(a+)(0)(85w;1)/(k0)
P N0 (R2,,—-1Y Pt N0 R2, —1y
+ b B k b B k
4g(p—p1)< )™ (Bsw; ") (ko) 4 g(p—p1)< )V (Byw ™) (ko)
_ 1 0 (0) (122, —1y/
4p1\/ﬁ(a )™ (Bsw; ) (ko). (6.80)
_ P 40 Ry B 1 (10)/ — 1 v/
K5 = 2 g(P—Pl)A4 (b~ Ba)' (ko) ZleAS (a=Bs)'(ko),
(6.81)

VOO )0 (B2 ) (ko) + YPL (a) ) B3y ) (ko)

Ke =

208 ) g
P Y Y(Bo N (ke) — — P p YD) (B2 (k
> g(p—pl)( )P (Bswy ) (ko) = 5 g(p_pl)( )W (Biwi ) (ko)
1 ()2, —1
201 m(a )W (Bswi™) (ko), (6.82)
07 = b AP (07 Bs) (ko) — =B (AP 1+ AL (07 By) (ko)
g(o—p1) g(o—p1)
S ANV (@ Bs) (ko), (6.83)

P1vEP1
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and
_ Pt ) 4(10)\2 1 (1) 4(10)y2
8 = e (AP ) (AL
_ P1 B g(1—1)
= (A=) ($2-)
g VI ) a1 =)
=0, (6.84)

respectively, which completes the proof. O
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THE COUPLED
BENJAMIN-ONO AND
SCHRODINGER SYSTEM

7.1 TRANSFORMATION THEORY

As a prelude to the derivation of the coupled system, we develop the
necessary transformation theory. We start with Hamilton’s equations from
the water wave problem in normal coordinates from Lemma 4.8

" 0 1 0 0\ [6H
) _ o (=10 0 o) [sH

| TVHE= 10 0 0 1] |suH @1)
& 0 0 -1 0/ \oH

We can also express the Hamiltonian both without and with scaled coordi-
nates in the forms H{u, {, p1,(1]x and ﬁ[ﬁ, Z, v1,71]x, where we integrate
with respect to x and long-wave variable X = ex, respectively. Now we
prove two short lemmas with respect to the symplectic structure of the
Hamiltonian.

~

Lemma 7.1. Hamilton’s equations and the symplectic map for (i, ) are given by

i\ (0 1\ [&H
Q-6

Proof. First welet (f,g)x = (g fgdx and (f,g)x = {r fgdX. Next, under

~

the Benjamin-Ono scaling, {(X) = ¢{(x) and 9(X) = v(x), we verify

1
(0cH,0)x = lim <(H[p,{+ 00,1, Gl — Hlp, & 1, Galx)
I D ~oLy
= lim (H[# ¢ + 00,01, 01]x — H[I, ¢, 01,01]x)
= ((55&,5))(

= &(65H,0)x, (7.3)
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whence 6;H = séZf{ . Under the modulational Ansatz, we calculate
Ofi = ¢ o = € 1o H = 6:H. (7.4)

Similarly, we use the Benjamin-Ono scaling y(x) = €p(X) and v(x) =
€0(X) to check

(6,H,v)x = (6;H,9)x = (6;H,0)x, (7.5)

whence 6, H = 5ﬁﬁ . Then, again under the modulational Ansatz, we calcu-
late

Ol = 0 = —6,H = —03H, (7.6)

which completes the proof. O

Lemma 7.2. Hamilton’s equations and the symplectic map for (vq,77) are given

by
v\ 0 —issl_2 6vlﬁ
g <vl> N (issl_z 0 > <501FI ' @7

Proof. Asin Lemma 7.1, we use the inverse of the Benjamin-Ono scaling
from Equation (6.12),

{Ul(X,f) = ﬁeleqkox <\/%71ﬂ1 +i\/‘71§1> 78)

UK, 1) = Ao (- ivanl),

as well as the modulational scaling given by 11 (x) = 711 (X), {1(x) = {1(X)
and v(x) = 9(X) to check

(60 H,0)r = (05 H, .
ﬁ |
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7.1 TRANSFORMATION THEORY

Finally, we perform the modulational Ansatz
v Jvp 0vy it
1 om0
! o 00 &1

vy 0
(@ & (0 s)(
(% (%
o a) N0
v 0 vy ooy &
(3 5 IE B
(% (% (% %
o)\ U \G a) \duH
_’ _2 £
B ( D, T ) ), 7.10)
ieg] 0 d5H

which completes the proof. O

Finally, we derive Hamilton’s equations of motion with respect to variables
pi and 1 := 0x(, the latter of which measures the horizontal shear velocity.

Lemma 7.3. Hamilton’s equations and the symplectic map for transformed vari-

~

ables (ji, 1l := dx() satisfy

i 0 —ox\ (6H
ol~) = L) 7.11
t <u) <—5X 0 > <5aH 710
Proof. Using Lemma 7.2, we readily calculate

il = 0x(0:0) = —ox (05 H). (7.12)

Letting H denote the rescaled Hamiltonian in i, 5 and long-wave variable
X, we use the scaling 7(X) = dxv(X) to check

(55H, U)X = (5gﬁ, 5)){ = (517]?1, &XU)X = — (8X5gﬁ, U)X, (713)
whence ¢ ZH = —6X65ﬁ1 . Finally, we calculate
Ofi = 6:H = —0x6;H, (7.14)

which completes the proof. ]

63



7.2 RESONANCE CONDITION 64

7.2 RESONANCE CONDITION

We define modified Hamiltonian

2
H=H—cl— %(wl(ko) ~cko)M, (7.15)

where the L2 norm
M ::J 012 dX (7.16)
R

is also a conserved quantity of the system. This can be readily verified by
showing that the Poisson commutator {M, H — cI} = 0 and so the Hamil-
tonian dynamics for this new quantity are preserved. Next we calculate
quantity
2
H® —c1 - %(w1 (ko) — cko)M, (7.17)
in which we temporarily omit the cubic contribution H (3), in the rescaled
variables.

Lemma 7.4. The quantity H? —cI — %(wl(kg) —cko)M is

wi’(kom(D%(vl)] aX + O(e) 7.18)

in the rescaled variables for the Benjamin-Ono and modulational regimes.



7.2 RESONANCE CONDITION

Proof. We add the two components from Lemmas 6.4 and 6.5

2

H® — ¢l - %(wl(ko) — cko)M
w2)(@) ~ w2)®) o ~ w2 @) o -
= [ |- a2+ 2 E0RiDe D) + 2 0k
R
- €2 o W (ko) __
+ 8}12 + ?1601 (k0)|1)1|2 + s%wi (ko)’01(Dx’01) + 8%8 1§ 0>’01(D§(’01)

s e , e _ N
+ ZCSC(DXy) — ?ko‘vlf — 7 [(val)vl + Ul(Dle)]

82
— ?1(601 (ko) — C0k0)|01|2:| dX + 0(84)

2)(2) ~ 2)(3) o ~ 2y(4) o o
= [ |- a2+ = DRID D) + 2 0k

- 2 _
+eji? — ice(Dx{)fi + (e (ko) — €) [(Dxo1)57 + 01 (Dxcor)]

2
+ S (a)er(Don) | X+ O(&), 7.19)
which, after some algebraic manipulation, yields the result. ]

The equation for this modified Hamiltonian H can be simplified with the
choice of

2)(2)
= o= 1)) (7.20)
2
and wavenumber k( such that
wy (ko) = co, (7.21)

which can be interpreted as the resonant condition between the internal
and surface modes that occurs when both the group velocity w/ (ko) and
the phase velocity cg coincide.

Lemma 7.5. The constants cy and ko satisfying Equations (7.20) and (7.21) are

1
Co = \/8(1 —Yhi; ko= m/ (7.22)

where y = %1 is the density ratio.
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Proof. Using Equation (6.14), we calculate
1

G = 5@ =1 - 1) (7.23)
as well as
fey = V8 o _ 1
W (kO) - 2\/% =C0 = g(l r)/)hl = kO - 4]’11(1 — ’)’)’ (724)
which completes the derivation. O

Using the resonance criteria from Equations (7.20) and (7.21), we simplify
the modified Hamiltonian H.

Corollary 7.6. The modified Hamiltonian H=H- col — %(wl (ko) — coko) M
is

2
H=Hcol - %(wl(ko) — coko) M

~ ~

o 2\(3)
_ JR E (ﬁ—coax€)2+82 (w1; (ex2) (IDx|x)

W)@ o gg? . >
OTZD40) + Lo (ko) (Do) + (DL

+ & (1l + 100x ) |01 * + k31| Dx|Dx{) (Dx{)
+ ee3 (rafl + x5(0x7)) [v1Dxv1 + 01 (Dxv1)]

+s3

+ e€1 (6(|Dx |) + x7(IDx10xE)) [o1]* + x5 (IDx[ 1) (Dx{)? | dX

+ O(eh) (7.25)
in the rescaled variables for the Benjamin-Ono and modulational regimes.
7.3 HAMILTONIAN IN CHARACTERISTIC VARIABLES

We examine the dynamics of the system in the principal direction of propa-
gation. To do this, we adopt characteristic variables

1 co ~ ~
"\ _ [ V2o 2 By _. 4
O0-(% )=o) om

A 2C0

where il = 0x{, and r(X, t) and s(X, t) are the principally right-moving
and left-moving parts of the solution, respectively. One may focus on the
portion of the phase space in which s = O(e?) and where the wave propa-
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7.3 HAMILTONIAN IN CHARACTERISTIC VARIABLES

gates primarily to the right.

We effect the change of variables in Equation (7.26) to obtain the modi-
fied Hamiltonian H in characteristic coordinates.

Proposition 7.7. The modified Hamiltonian His

7 (wz)(3) 2 (Wz)(4) 3,02
H= J]R 24c e“r(|Dx|r) — 96c e’r(0xr)
1 . 1

- Esg%wgl(k())vl(ag(vl) - KSZZ\/ZTQY?)

Co 1 1
+ € <KM /> + sz) rlog)? — (k3 + K8)2m8372(|DX|r)

1 _ .
+ e€] <K4\/C270Jr KE’\/E) r[o1(Dxv1) + o1 (Dxo1)]
1
e ("6\/§+"7\/270> (IDxlF)o1 24X + O (e (7.27)

in characteristic variables (r,s,v1,77).

Proof. Since

1 - €O ~
\/2?0;4 — A /EOu ~ O(e?), (7.28)

_ 1~ oo [24 2
r—\/zTOy—l— Sl = COy—l—O(s). (7.29)

This follows directly from the substitution of characteristic variables r and
s into Corollary 7.6. O

it follows that

Next we find the symplectic map | and Hamilton’s equations of motion in
the characteristic variables, r and s.

Proposition 7.8. Hamilton’s equations and the symplectic map for charac-
teristic variables (7, s) are given by

r —aX 0 0 0 5rEI
d|s 0 odx O 0 5sH
a4 _ . 7.
dt | o 0 0 0 —ie 2| |5, H|’ (7.30)
o1 0 0 g% 0 65 H

where H is the modified Hamiltonian given in Equation (7.27).
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7.4 COUPLED SYSTEM OF EVOLUTION EQUATIONS

Proof. This follows readily from Lemma 7.3, since the change of variables
matrix is orthogonal and so

r\ 0 —0x\ r(6HY [(—0x 0\ [(6H
2 -0 o (4) - (3 2)(A). oo
which completes the proof. O

7.4 COUPLED SYSTEM OF EVOLUTION EQUATIONS

In this section, we find the coupled system of evolution equations of mo-
tion for the internal wave and the envelope of the free surface, using the
symplectic map found in Equation (7.30) for long-time variable T = ¢t for
Benjamin-Ono as well as for Schrédinger in modulational regime g1 = ¢!

Proposition 7.9. The free interface evolves according to a Benjamin-Ono
equation

(0?)® (W 3K
Ot 200 ox(|Dx|r) + ¢ 18¢, é’Xr—k\/z?or(&Xr)

€0

—¢ <K1 > + Kz\/;T()) aX(|7]1|2)

+ e+ ) V;O [ox(r(IDxIr)) + [Dx|(roxr)]

. €1+2<5 <K4\/C270+ K5\/;TO> ﬁx [01 (m) ‘f‘Uil(DXUl)]
=42 (g [2 17— ) ex(1Dxln ), 7.32)

coupled with the free surface, whose envelope satisfies a linear Schrodinger
equation given by

"
i0rv1 = —wlgko) 6%501 +et (Kl\/§+ KZ\/;T() rv1
. Co 1
—i (K4\/Z—|— K5\/270> (Ox(rvy) + roxor)
Cco 1
n <K6\/; +xr—— ) o1(1Dxlr). 733)

Proof. To derive the equations of motion for the interface and the free
surface, we find the variational derivatives 6, H and éz;H for the modified
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7.4 COUPLED SYSTEM OF EVOLUTION EQUATIONS

Hamiltonian H, respectively, from Proposition 7.7 by acting on test function
v e CP(RR). We show, for instance, that

5. { [ r1Dxi ax} o

— lim < [ (r+ 60)2(|Dx|(r + 60)) — 2(|Dx|r) dX
50t 0 JR

= J]R [2rv(|Dx|r) +r*(|Dx|v)] dX
= ((2r(|Dx|r) + |Dx|(?)) , ) (7.34)
and
U{f r[v1(Dxv1) + 01(Dxv1)] dX} [0]
R

JR r[v1(Dxv) + (Dxv1)v]| dX
= (Dx(rv1) +r(Dxv1),0). (7.35)

The variational derivatives are

3 55

— (C‘JZ)(S) (’Dx‘i‘) _ (w%)(4)(0) 3

oxr) —
12¢0 180, & 1)~ et
> o 1 2 K3—|—K83 K3—|—K83
b D
+& (a5 +rege ) P = (D) - 2B Dy )
C 1 —_
+8€% <K4 £+K5 >[01(va1)+TJ1(DXv1)]
2 2CQ
+ ee7 ( 6 C—O—i—xy L |Dx|(|o1]?) (7.36)
2 v2co
and

N 1 C 1
d5rH[r] = —Eeslwl(ko)axm + € < 1A /EO + K2m> v
—iee? | Kyq [ 1<5L (0x(rvy) + roxor)
2 \/ZCO
tee? (Ko |2+ xyi v1(|Dx|r). (7.37)
1 2 \/ZC()
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By Proposition 7.8, Hamilton’s equation of motion are

or = —ox6,H
(‘UZ)(S) 2 (w%)(‘l) 342 3k 5
- _9 D _ _
X{ 12ey € UPxIr) = —ggo—eoxr = 5 et
> Co 1 ) K3+Kg 3 K3+ Kg 3 2
il BT S (1Dyr) — D
+ (i +rr g ) I = 22 IR (D) - B Dy )
1 - .
+ g2 <K4 C*0+K5 ) [v1(Dxv1) 4 01(Dxv1) ]
2 2C0
+£s% Ke C—O+K7 1 |DX\(\U1]2) , (7.38)
2 \/ZCO
and

n k 1
= —szwlgo)aivl +e (KM /%0 + K2m> ro;

. c 1
—ie? (KM /EO + K5\/2TO) (0x(rv1) + roxvr)

1
+ € <K64 /%0 + Kym) v1(|Dx]r), (7.39)
for the interface and free surface, respectively. After scaling, we yield the
result. O

Observe that, truncated at cubic order, the Schrodinger equation for the
envelope of the free surface is linear.

7.5 ANALYSIS OF COEFFICIENTS IN TERMS OF PHYSICAL PARAM-
ETERS

Recalling that ¢ = (w?)”(0) = g(1 —)h and kg = m from
Lemma 7.5, we find the explicit forms of the coefficients x and Kj for
j€{1,2,3,4,5,6} from the proof of Proposition 6.6 in the previous chapter
in terms of physical parameters g, 11, p and p;. This evaluation of the coef-
ficients is needed to derive the higher-order Benjamin-Ono equation. Since
some of the terms are < O(e 1), they make a negligible contribution to

the equations of motion as vy — 1~ and kg — c©.



7.5 ANALYSIS OF COEFFICIENTS IN TERMS OF PHYSICAL PARAMETERS

Proposition 7.10. The coefficients of the cubic terms of the Hamiltonian
K, K2, k3, k5, k7 and kg from Equations (6.76), (6.78), (6.79), (6.81), (6.83) and
(6.84) are

« = v8l-)
2@\/

- 8 —koh1
"2 i O
wa = —V8(l—1)r

7 N (7.40)

K = V5T 4 O

_ V&Y —koh
7 44/p1(1=7) +0le )
kg =0,

\

while the remaining ones from Equations (6.77), (6.80) and (6.82) scale like
K1, K4, Ke S O(e’kohl). (7.41)

Proof. To begin, we calculate the asymptotics of B; for each j € {1,2,3,4,5}
at resonant wavenumber k = k. First, we approximate

Biky) = 20— p1)GOGY 14 /gpiGOGY
0G4 p1GO)

ko < Vo —p1 > —koh
I~ — — _2 0
Py N \/8(p—p1) —2¢/801 ) €

_ k()e_koh1 \/g
N

Next, we approximate

— 0 - 0
Ba(ko) = 1 8GO (0,GY + 0GO) + b=g+/p1 (0 — p1)GOGY

(7.42)

V3P oG1Y + 016G
| K
- (ko + O(koe 29)) ~ */j;’ (7.43)

Then, we find B; = Bisgn(ko),

_ _ _ _ 0 _
By(ko) = b4 /8(p —p1)DGV'B; " — za V8PIDBF Gy < O(koe ™M)
(7.44)
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7.5 ANALYSIS OF COEFFICIENTS IN TERMS OF PHYSICAL PARAMETERS

and finally Bs(ko) = —a~/gp1ko ~ —ko,/gp1- The second step is to do the
formal calculations. We recall the coefficients of the grouped terms deduced
from R; for each j € {1,2,3,4,5}. We recall that

e V8A—Y) Vs
2,/p1 Vo1

from our calculations at the beginning of this section. Next, noting that

b"(0) = \/yand a®(0) = 4/1 — 7, we calculate

0= g OBk k) — 5 0)(Bhr ) ) + O )
CRKPV1I=y KPPV —kohy kol
RN — N +O(e )< O(e ), (7.46)
_ —ko/g(1—1) kol _ V8 kol
= —\/PT +O(e ) = o= +O(e ), (7.47)
+ 0 , + 0 vy B
= Y O (i) - 4 Y (k) + O
_A/p(=7), (gk?
4R i <P1\/§> (ko)
1 e, (F%gm kol
v () )+ 0
< O(e o) (7.48)
and
1 (1) - / —kohy
_Zpl\/ﬂAS (0)(a~Bs)' (ko) + O (e Fol)
= o (VR (0) (k5P (ko) + O )
_ V8= ooy, (7.49)

2yp1
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Similarly to the computation for k1, we show

1 1
ro = 5 e )V (B ) k) = 5 (B k) )
+ O (e kohy < O (ko). (7.50)
Lastly, we verify
1
7 = e a Bs) (ko) ALY O
_ 1 _ 1) kol
.01\/%( go1ko) (— v/gp1(a™)) + O(e™™)
__V8Y | (e, (751)
p1(L—7)

as both B3 (ko) < O(e ) and By (ko) < O(koe %), which completes the
calculation. ]

Lastly, we write the coupled system of evolution equations in terms of the
relevant coefficients.

Proposition 7.11. Neglecting the exponential terms of order O (e~%") from
K1, k4 and g, the coupled system has the form of a higher-order Benjamin-
Ono equation for the free interface

(w?)® (@)®(0) 5 3
= — D ) ot
Ot 12cg ox(|Dx|r) +¢ 180, oxr + mr(&xr)
K
—825\/22T08X(\v1\2) + &= [Ox(r(IDxIn) + IDx|(rdxr)]
K —
_ 81+2(5\/T5?0 [Ul (DXUl + U1(DX01)]
K
- e1+25¢7%0ax(|13x\<|v1|2>), (7.52)
and a linear Schrodinger equation for the free surface
"
k
10701 = —wlg 0) o%v +e1 \/K;Torvl — i\/%(éx(rvl) + roxv1)
K
+ \/27?001(|Dx|r), (7.53)

where the coefficients are expressed in terms of the physical parameters g,
p, p1 and hy.

Proof. This follows directly from Propositions 7.9 and 7.10. O
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7.6 CONCLUSION AND FUTURE WORK

We performed asymptotic analysis of the coupling of free internal and
surface modes for a fluid consisting of two layers, the lower of which is
infinitely deep. We have treated the internal mode under the Benjamin-Ono
scaling regime, while the surface is approximated by a modulated, quasi-
monochromatic wave. This modulation appropriately corresponds to the
“ripple effect" that occurs in natural ocean dynamics [PS65], in which the
visible tides on the surface and the internal wave propagate at the same
velocity. Using a Hamiltonian formulation of the water wave problem and
perturbation theory, as developed by [CS93], [CGKO05] and [CGS11], we de-
rived a system of evolution equations: the free interface evolves according
to a higher-order Benjamin-Ono equation and is coupled to the free surface,
whose envelope satisfies a time-dependent, linear Schrédinger equation.

When high-order corrections are neglected, Guo-Miao [GM99] and Pecher
[Pec06] proved global well-posedness of KAV and BO equations, respec-
tively, coupled to a linear Schrodinger equation. Specifically, Pecher proved
that dispersive system

{64 = w1 0x(|Dx|r) — e az0x(|v1]?) (7.54)

i0;v1 = —[Slé’%(vl + e_l[ﬂzrvl

with initial data r(x,0) = ro(x) and v1(x,0) = (v1)o(x) is globally well-
posed. More recently, Linares, Pilod and Ponce [LPP11] established local
well-posedness for a higher-order Benjamin-Ono equation

{@Lu - bH(Mxx) + Auyyy = CUlly — d[uH<”x) + H(uux)]x (7.55)

u(x,0) = up(x)

with initial data ug € H®, s > 2. Currently, we are working to extend this
result to a higher-order coupled system

Orr = a10x(|Dx|r) + eaxd3r + azr(oxr)
—825064(9x(|’01|2) + eas [ax(r(‘D)di’)) -+ |Dx‘(1’axr)] (756)
0707 = —B10%01 + 1 Boroy.

I am also considering the extension of the analysis from two dimensions to
the three-dimensional water wave problem. Coupling between internal and
gravity surface waves has previously been studied for three-dimensional
fluids comprised of two distinct layers [CGS15] in the shallow water
limit, in which the equation of motion for the interface is the Kadomt-
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sev—Petviashvili II (KP II) equation [KP70]. In the deep water model, one
of the earlier higher dimensional versions of the BO equation is Shrira’s
equation [Shr89]

l(uz)x =0, (x,y) e R%teR, (7.57)

(3’tu — Rluxx + 5

where the operator R; denotes the Riesz transform with respect to the first
variable defined by

(R1f)(x,y) : = %p.v. {ff ( (x —Zl)f(Z1,Zz)2)3/2 iz, dzz} . (7.58)
R2

x—21)%2+ (y — z2)

We expect that the long internal wave will evolve according to a two-
dimensional Benjamin-Ono (2D BO) equation

{atu - %(uxx + uyy) + %(uz)x =0 (759)

u(x,y,0) = uo(x,y),

which was derived precisely as the KP II approximation to the BO equation
[Nas23]. Interestingly, both the KP II and 2D BO equations have similar
forms as studied by Ablowitz, Demirci and Ma [ADM16], which is an
avenue for analysis of the model equations in deep water to explain the
characteristic features physically observed on the surface of seas due to the
internal modes.
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INTRODUCTION

The goal of this part of the thesis is to prove a Bochner formula on path
space for the Ricci flow, and to discuss some applications. This generalizes
the Bochner formula on path space for Einstein metrics from Haslhofer and

Naber [HN18b].

Throughout this part, we shall use the convention that an evolving family
of manifolds is a smooth and complete family of Riemannian manifolds
(M", gt)te1 such that

sup (Rm|+ [dig| + [Varg|) < oo. (1.1)
MxI

1.1 BACKGROUND ON CHARACTERIZATIONS OF EINSTEIN MET-
RICS

To begin, let us recall some well-known characterizations of when a Rieman-
nian manifold (M, g) is a supersolution to the Einstein equations. Let H; f
denote the heat flow of a function f : M — RR. Then its gradient satisfies
the Bochner formula

(=0 + A)|VH f|* = 2|V2H, f|* + 2Rc(V H; f, VH; ). (1.2)

Using this, an equivalence between supersolutions of the Einstein equations,
the classical Bochner inequality and the gradient estimate readily follows,
ie.

Rc >0 < (& —A)|VHif]? < —2|V2H;f|? (1.3)
< |VH;f| < H{|Vf], (1.4)

for all test functions f : M — R.

Until recently, however, there was no analogous characterization of so-
lutions to the Einstein equations. Such a characterization was discovered
by Naber [Nab13] by employing the analytic properties of path space
PM = C([0,0), M). This path space is naturally endowed with a family
of Wiener measures {IP,} of Brownian motion starting at x € M. One then
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1.2 BACKGROUND ON CHARACTERIZATIONS OF RICCI FLOW

introduces a notion of stochastic parallel transport and the corresponding
family of parallel gradients {VL' }. Using this foundation, Naber [Nab13]
developed an infinite-dimensional generalization of the gradient estimate
(1.4) to characterize solutions of the Einstein equations. Namely, he proved
that

Rc=0 — ‘fo FdP,
PM

< J IVIF|ap,, (1.5)
PM
for all test functions F : PM — IR.

Interesting variants of these characterizations and estimates have been
obtained in [CT18b], [CT18a], [Wu20], [FW17] and [WW18].

Later, Haslhofer and Naber [HN18b] proved an infinite-dimensional gener-
alization of (1.3). Namely, they showed

Rc=0 <« d|ViF[> = (V{|VE[% dW,) (1.6)

for all martingales F; : PM — R.

Using the infinite-dimensional Bochner formula (1.6), they gave a sim-
pler proof of the infinite-dimensional gradient estimate (1.5) in a similar
vein to how the classical Bochner formula (1.3) readily implies the classical
gradient estimate (1.4).

1.2 BACKGROUND ON CHARACTERIZATIONS OF RICCI FLOW

To motivate the characterization of solutions of the Ricci flow, let us first
recall characterizations of supersolutions, namely evolving Riemannian
manifolds (M, g)ses such that

&tgt = —ZRCgt. (17)

To begin, consider the heat flow Hy; f on this evolving background, namely
the solution of the heat equation d;u = Ag,u with initial condition f at time
t = s. Then its gradient satisfies the Bochner formula

(0 = 8g)[VHstfI? = =2|V2Hat f* + (9181 + 2Reg, ) (VHstf, VHst f). (1.8)
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Using this, an equivalence between supersolutions of the Ricci flow, the
Bochner inequality and the gradient estimate readily follows, i.e.

Oigt = —2Rcy, <= (0t — Dg,)|VHuf|* < —2|V*Hy f|? (1.9)
<= |VHaf| < Ha|Vf], (1.10)

for all test functions f : M — R.

To generalize the inequality (1.10) to an infinite dimensional estimate, Hasl-
hofer and Naber [HN18a] considered space-time M = M x I equipped
with the space-time connection defined on vector fields by

1
VxY = VY, ViY = aY + Sagi(Y, )#8 (1.11)

The main difference, compared to the infinite dimensional estimate that
characterizes Einstein metrics, is that the parabolic path space Pr.M only
consists of continuous space-time curves {y; = (T — 7,x¢)} that move
backwards along the time-axis with unit speed and start at fixed time T € I.
This path space is naturally endowed with a family of parabolic Wiener
measures {IP(, 1)} of Brownian motion starting at (x, T) € M and parabolic

stochastic parallel gradients {V,','},,;o defined via (1.11). Using this frame-
work, Haslhofer and Naber proved an infinite-dimensional generalization
of the gradient estimate (1.10) that characterizes solutions of the Ricci flow.
Namely, they proved that

&tgt = _ZRCg, < ‘VXJ FdIP(x,T)
Pr M

< f IVUF|dP 1) (1.12)
Pr M
for all test functions F : Pt M — R.

Some nice variants of these characterizations have been obtained by Cheng
and Thalmaier [CT18a]. Moreover, Cabezas-Rivas and Haslhofer [CRH20]
found an interesting link between estimates in the elliptic and parabolic
settings.

However, there is no analogous treatment of the Bochner inequality (1.6) in
the time-dependent setting. The primary goal of this part shall be to prove
such an equivalent notion.
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1.3 BOCHNER FORMULA ON PARABOLIC PATH SPACE

Let (M, gt)te1 be a family of evolving manifolds and let M = M x I be
its space-time equipped with the space-time connection defined on vector
tields via (1.11). Next, as in Section 1.2, we consider the parabolic path
space Pr M, given by

PrM := {(xT, T — T)refori|x € C([0, T],M)}, (1.13)

and endow this space with the parabolic Wiener measure of Brownian
motion on space-time, IP(, 1), based at (x, T) € M as well as the associated

parabolic parallel gradients V(U defined via stochastic parallel transport on
space-time M. To explain these notions in more detail, first recall that the
solution to the heat equation J;u = Ag,u with initial condition f at time
t = s is given by convolving with the heat kernel i.e.

Huf (1) = | Hx,ty,9)f(5) 2V, o). (1.14)

The Wiener measure P, 1) is then uniquely characterized in terms of the
heat kernel by

]P(X,T) [XTl € ull .. -/XTk € Uk] (115)

Tk

= Ll' Ju H(x, Tjx1, T-11) H(x1, T-Ta|xp, T-1)dVolg _ (x1)--dVolg __ (xx)

where X; is a Brownian motion on M starting at x. Moreover, the stochastic
parallel gradient vIIF (v) € (TyM, gr) of a function F : PrM — R, is
expressed in terms of the Fréchet derivative by

DyoF(y) = (VHF(Y), 0)(r.mgr)- (1.16)

where V7 is the vector field along < defined by V¢ = P~ 10]1[(7;] (1) and
{P:}, a family of isometries, referred to as stochastic parallel transport.

With the aim of generalizing (1.9) to an infinite-dimensional estimate, we
consider martingales on parabolic path space, i.e. X.;-adapted integrable
processes Fr : P, 1)/M — R that satisfy

Fr, = E[F,|Zq], (1.17)

where E[- | Z;] denotes the conditional expectation with respect to the o-
algebra X.; of events observable at time 7.



1.3 BOCHNER FORMULA ON PARABOLIC PATH SPACE

For example, if F(y) = f(m17r,), where f : M - Rand my : M x I — I,
then the induced martingale Fr = E[F | 2] for T < 7y is given by

Fr(v) = Hr—q 1< f(m1777) (see example 2.18). (1.18)

Specifically, martingales generalize heat flow. This analogue between mar-
tingales and heat kernels will motivate our development of the following
generalized Bochner formula on PM.

Theorem 1.1. (Generalized Bochner Formula on PM) Let Fr : P, 1yM — R
be a martingale on the parabolic path space of space-time. If o = 0 is fixed, then

d(VIE ) = (VIIVIE R, dWe) + (¢ + 2Re)<(VIE,, VIE) dt
+2|VIVIE 2 dr + 2| VIE, 2 dé, (1), (1.19)
where (¢ + 2Rc)<(v,w) = (gt + 2Rcy,)|i=1— (P70, Py 'w) and ¢ = &g

This generalized Bochner formula proves to be a fundamental tool in char-
acterizing the Ricci flow. Note that, if (M, g;)ses evolves by Ricci flow, this
formula reduces to

d(|VIE?) = (VIVIER, awe) + 2 VIVIE 2 dr + 2| VIE 2 déy (1),
(1.20)

and this trivially implies the following infinite-dimensional generalization
of Bochner inequality (1.9) in the time-dependent setting

d(|VoFe?) = (VUVIE, dWe) + 2| VIV E 2 dT + 2|V F 2 doy (7).
(1.21)

In contrast to the heat flow Bochner inequality, this generalized martingale
Bochner inequality (1.21) as well as the estimates that follow from it are
strong enough to help exhibit solutions and not just supersolutions of the
Ricci flow.

Specifically, Theorem 1.1 has four main applications:

¢ a characterization of the Ricci flow via Bochner inequalities for mar-
tingales on parabolic path space;

¢ gradient estimates for martingales on parabolic path space;

¢ Hessian estimates for martingales on parabolic path space;
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¢ anew and much simpler proof of the characterization of solutions
of the Ricci flow by Haslhofer and Naber in 2018 [HN18a, Theorem
1.22],

which will be discussed in Section 1.4.

To explain the meaning of Theorem 1.1 in the simplest example, this gener-
alized Bochner formula on PM directly reduces to the standard Bochner
formula in the case of 1-point functions, i.e. when F;(vy) satisfies equation
(1.18). That is, the evolution of |VHr_ 17— f |? for T < 11 is calculated as

(—0c = Agr_,) IVHr o1 fI* < =2/V?Hr o rofI> (122)

in Corollary 3.4. Settings = T — 7y and t = T — 7, this explicitly recovers
(1.9) from Section 1.2.

1.4 APPLICATIONS

We will conclude with some main applications of our Bochner inequality
(1.21). First, we shall develop a new characterization of the Ricci flow.

Theorem 1.2. (New characterizations of the Ricci Flow) For an evolving family
of manifolds (M", g )se1, the following are equivalent to solving the Ricci flow
atgt = —ZRCgt.'

(C1) Martingales on parabolic path space satisfy the full Bochner inequality

AVIER = (V|VIE 2 dawy) + 2| VIVIE 2 dr + 2 VIE, 2 ds, (1)
(1.23)

(C2) Martingales on parabolic path space satisfy the dimensional Bochner in-
equality

2
d[VoFe? > (V| VyFe !, dWe) + =By Fel dT + 2| VoF, | doo (1)
(1.24)

(C3) Martingales on parabolic path space satisfy the weak Bochner inequality
AIVIE? = (Vo |VIE P, dWe) + 2| VF,[? d6s (T) (1.25)
(C4) Martingales on parabolic path space satisfy the linear Bochner inequality

d\VIE| = (V| VIE|, dW,) + |VIE,| dé, (1) (1.26)
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(C5) If F; is a martingale, then T — ]V(lf‘FT| is a submartingale for every o = 0.

Second, we shall obtain gradient estimates for martingales on parabolic
path space.

Theorem 1.3. (Gradient Estimates for Martingales on Parabolic Path Space)
For an evolving family of manifolds (M", g )sc1, the following are equivalent to
solving the Ricci flow 0;g; = —2Rcy,:

(G1) ForanyF € L*(PM), o fixed and © < 7o, the induced martingale satisfies
the gradient estimate

VIF,| < By [V 2] - (127)

(G2) Forany F € L>(PM), o fixed and 7 < T, the induced martingale satisfies
the gradient estimate

IVUE P <Eqm [|VL'FT2|2\2T1} . (1.28)

Note that in the case of ¢ = 7y = 0, (G1) reduces to the infinite-dimensional
gradient estimate (1.12).

Next, we shall obtain Hessian estimates for martingales on parabolic path
space.

Theorem 1.4. (Hessian Estimates for Martingales on Parabolic Path Space) For an
evolving family of manifolds (M", g)ser that solve the Ricci flow 0;g; = —2Rcg,
and a function F € L*(PM), it holds that:

(H1) Foreach o = 0, we have the estimate

E (1) [\VL'PJH +2E (1) LT [\ngt‘rlﬂﬂ dt < E( 1) [\VHFH -
(1.29)

(H2) We have the Poincaré Hessian estimate

E 1) [(P —E) [F]) 2]
T

e = n
+2 f J E(or) [[VIVIEP] dodr < f B, [V0FF] do.
0 JO 0
(1.30)
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(H3) We have the log-Sobolev Hessian estimate
Eor) [FIn(F)] — B, p) [ In (B ) [F))
T prT
+2f J By [(P)elVIVEIn((F) )] dodr
0 JO

T
<4 L Er) [\V!}Pﬂ do. (1.31)

Finally, our generalized Bochner formula on parabolic path space leads to
a simpler proof of the characterization of solutions of the Ricci flow found
by Haslhofer and Naber [HN18a].

Theorem 1.5. (Characterization of Solutions of the Ricci Flow) [HN18a, Theorem
1.22] For an evolving family of manifolds (M", g )te1, the following are equivalent:

(R1) (M",gt)er solves the Ricci flow 0;g; = —2Rc,.

(R2) For every F € L2(P.M), we have the gradient estimate

’vxlE(x,T) [F]‘ < ]E(x,T)HV(‘)'FH- (1.32)

(R3) For every F € L2(PM), the induced martingale {Fr}repo,1) satisfies the
quadratic variation estimate

d[F,F|,
E,m) [ [dT] ] < 2E(,7) [IVﬂFIZ} : (1.33)

(R4) The Ornstein-Uhlenbeck operator Lz, -,y on parabolic path space L*(PM)
satisfies the log-Sobolev inequality

E (1) [(F?)2108((F?)r,) — (F?)7 log((F?)4)]
<2E (. 1) [<F, L(M)DH} : (1.34)

(R5) The Ornstein-Uhlenbeck operator Lz, -,y on parabolic path space L*(PM)
satisfies the Poincaré inequality

IF—"(x,T) [(FTz - FTl )2] < ]E(x,T) [<F1£(T1,TZ)F>H] . (1-35)
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Our new proof is much shorter. For example, to derive (R2), integrate (C4)
from 0 to T, and take expectations

E (1)

T I (C4)
f d|ngT| dt| > IE(x,T)
0

T
f (V| VUF|, dWy) + |vanrd(sa<r>]
0
E viF| - E vIEIl =0 1.36
= E(q |IVoF| 1) ||VolFe|| = (1.36)
Then take limits as ¢ — 0 to yield the result
IVE (. [Fll = E ) [lVHFol] <Eqr7) [IVQFI] : (1.37)

Part IT is organized as follows:

¢ In Chapter 2, we shall discuss the geometric and probabilistic prelim-
inaries needed for the proofs of our main theorems.

¢ In Chapter 3, we shall prove Theorem 1.1, the Bochner formula for
martingales on parabolic path space.

¢ In Chapter 4, we shall discuss the four aforementioned applications
of our analysis on path space, i.e. Theorems 1.2, 1.3, 1.4 and 1.5.
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PRELIMINARIES

2.1 GEOMETRIC PRELIMINARIES

To begin this section, we shall recall the concepts relevant to the construc-
tion of the frame bundle on evolving manifolds. An expression of the
canonical horizontal (H, and D;) and vertical (V,;) vector fields and their
commutators will complete this preliminary section.

In time-independent geometry, given a complete Riemannian manifold
M, one considers the orthonormal frame bundle 7t : F — M, where the
fibres are orthonormal maps Fy := {u : R” — T, M orthonormal}. To each
curve x; € M, one can associate a horizontal lift u; € F. In particular, to
each vector X € TyM, given u € I (x), one can associate its horizontal lift
X* e T,F.

We shall now explain, following [Ham93|, [HN18a] and [Per08], how these
notions can be adapted to the time-dependent setting. To make the appro-
priate adjustment, we begin by defining space-time M and the equipped
connection V as follows:

Definition 2.1. (Space-time) Let (M, g )1 be an evolving family of Rieman-
nian manifolds. The space-time is then defined as M = M x I equipped
with the space-time connection defined on vector fields by VxY = VY
and V;Y = ;Y + 30,4:(Y, )"

Also observe that this choice of connection is compatible with the metric,
namely

d
a<X/ Y>gt = <th/ Y>gt + <X/ VtY>gt- (21)

Generalizing the earlier time-independent construction, we consider the
Oy-bundle 7 : F — M, where the fibres are given by

Fixp = {u: R" - (T¢M, g;) orthonormal} . (2.2)

To each curve 9; € M, we can now associate a horizontal lift u; € F.
Namely, given 1y € 771(79), the curve u; is the unique solution of 7(u;) =
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vt and V, (ure,) = 0 fora € {1,2,...,n}, where V is the space-time connec-
tion from Definition 2.1. More explicitly, we provide the following formal
definition:

Definition 2.2. (Horizontal lift) Given a vector aX + o € T(, ;)M and
a frame u € F(,,), there is a unique horizontal lift aX* + BD; satisfying
(2 X* 4+ BD;) = aX + Bo;. In particular, X* is the horizontal lift of X €
T M with respect to the fixed metric g;.

Note that there are n + 1 canonical horizontal vector fields on F, namely
the time-like horizontal vector field D; defined as the horizontal lift of ¢;
and the space-like horizontal vector fields {H,},_; defined by H,(u) =
(ueg)*. Also note the notion of vertical vector fields given by V(1) =
%|g:0(u exp(eAsp)) where (Aw)ed = (0aclpd — Opcdad) € Myu(R). We now
want to express these horizontal and vertical vector fields in local coordi-
nates as follows:

Definition 2.3. (Local coordinates) We view F as a sub-bundle of the GL,-
bundle 7 : G - M where g(x,t) = {u:R" - (TxM, g;) invertible, linear}.
Then, when given local coordinates (xl, ., X", 1) on M, we get local coordi-

J 0

nates (x',t,¢}) on G, where ¢} is defined by ue; = ezz ;.

Also note that on F we have 6,, = g(ue,, ue,) = gijei,eé and thus we can
express the inverse metric as

g =elel. (2.3)

It now remains in this section to both write out the canonical vector fields ex-
plicitly in local coordinates and derive some commutator relations between
them.

Lemma 2.4 (cf. [Ham93]). In local coordinates, the canonical horizontal vector
fields H, and Dy and canonical vertical vector fields V,, can be expressed as

where (018)ab (1) := (918) re(u) (uCa, ies).

Proof. The canonical horizontal vector fields, H,, are exactly the same as
in [Ham93]. Since the canonical projection 7w : F(M) — M induces an
isomorphism 7, : H,F(M) — T, M, the horizontal lift is uniquely defined
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by the push-forward 7, (11;) = use, at t = 0 with initial condition 1y = u.
Then we can write an expression for the horizontal lift H, (1)

i 0 0
Halu) = (uea)” = (s (0))* = ilo = S5+ E(0) 57 (29)

By construction, the vector field 7, (11;) = u;e, is parallel transported along
x¢ = {x{} for all 4, and we can write the following differential equation for

vs(t) = ea(t) X}

Vi <€Z(f)Xb) =4,V (eh(f)X§€k>
X (Vjer) + eV (e () XE)
X’;F]g (xt)es + x ek(V-v (1))
w(xe)es + (xtV ok (¢t )) ex
= (ka xt)xtva(t) + z')a(t)) ey
0

and thus, at t = 0, we obtain
F;fl(xo) ol (0) + %, (0) = ( )e]e +¢5(0) = 0.

Hence, we obtain

0 0 o 0
P 6l — pel = = Tekrt — 2.7)

H,(u) = 1(0) = %(0) PR P,

as desired.

Next, considering the curve u(e) = uexp(eA,), recall that e]; and Agpe. are
& P ab

defined via the relations ue, = e{; aU - and Agpec = dealy — Oepeq. Then derive

u(O)eC = EL(O)% = UAgpec = Ogcliey — Opclieg = <5uceé - 5bce{1> oxl’ (2 8)
whence
' 0 0 i 0 i 0
Vip = 1(0) = éL(0)— = (g}, — Spel) — =€, — — e, — (2.9)
C)aejc (acb b >é’e]C b@efl aeé
as given.

Finally we recall that D; is defined as the horizontal lift of J;. More explicitly,
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given ug € F, suppose 1t(ug) = (xo,to) and 7; := (xo, fo +t) and let u; be
the horizontal lift of ;. Then, we have that D;(uy) = % |t=ou¢. Recalling Def-
inition 2.1, and using the tensorial transformation rule @ ah = O gjkeée'g
(see equation (2.13) below), we compute

co\ _de) o d
Vi <€laax]) T %‘f’euvt <8x1>
- d(eﬁ) 5 1 i ke 6
=g o T 2088 2
d(eg) 6 1 ; k0 (?
=g A T 2t 3
d(eg)i 1"V ¢ é’

It follows that, since ¥; = 0; and u;e, = eﬁ(t) %,

0 d 1~ 0
V%(utea) == v,f (eg(t)axe> == <dt(3£(t)) + zﬁtgabeé) W == O. (211)

By exhibiting D; () in local coordinates

0 0 d 0 1~ 0
Dt(uo) =0- % —+ 1. a —+ a’t:(](eﬁ(t))ﬁ = 0,5 — Eé’tgabefﬂ, (212)

a

we conclude the proof. O

We now recall that the time-dependent tensor fields T correspond to equiv-
ariant functions T on F. For example, a function f : M — R corresponds
to the invariant function f = fomr : F — R and a time-dependent
two-tensor T = Tj;(x, t) dx' ® dx/ corresponds to an equivariant function

T = (Ty) : F — R™" via Tpy(u) = Trr(u) (ueq, uey). Note that identities

J 0

Ueq = €g7; and ue, = e’g% yield the transformation rule

~

Ty = Tyele). (2.13)
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Also observe that using equations (2.4) and (2.13), one obtains the formula

- 0 0
VarTea = (e]ljaek ka k) (sze )
(ebaaakef + ekl 5islel — ekatoiel, — e’;egagéi)
= Tj; (eéeﬁlcsg + e{)eéég — e;e{iéf — e{lelcéd)
= Tya0? — Toa6? + Tep0§ — Teal. (2.14)

Proposition 2.5. (Derivatives) [HN18a] From the correspondence with
equivariant functions, the first and second order derivatives of tensor fields
can be computed as follows

VT = X*T
V.T = D,T

e N N (2.15)

(V2f) (ueq, uey) = HoHyf

Proof. Except for the fourth identity regarding the Hessian, these are either
classical results from differential geometry or have already been proven in
Lemmas 3.1 and 3.3 of [IN18a]. For this last identity, write the canonical
horizontal vector fields in local coordinates and compute

0 0 =~
kol P
H,Hyf = ( o — e ecliis g)ebaxpf
0 ~
_ Lk r’
= % <8 J&x"f Jk&x’”f)
= 6£€§Vjka
= V?f(ue,, uey), (2.16)
thereby proving the proposition. O

Next we proceed to prove a few commutator relations between the newly
defined vector field, D;, and the canonical horizontal and vertical vector
fields.
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Lemma 2.6 (cf. [Ham93]). The fundamental vectors fields on the frame bundle
satisfy the following commutator relations

[Ho, Hy] = 3RapeaVea

[Vap, He] = dacHy — dpcHa

§ WVabs Veal = 0vaViac — 0aa Ve + 6acVoa — ObcVaa (2.17)
[
[

Dy, ] = _%ét\:gade + %Hbét\:gacVCh
D;, V. ] =0.

\

Proof. We start by deriving the commutator relations not involving D; from
basic differential geometry. Firstly we take the more deliberate approach of
breaking the commutator of horizontal lifts into four parts

i a i a —y (3
(H,, Hy] = [efa.ef.,]_[efa]efedr,k,a ]

oxi” b oxi d

— [ea CFK d e],a]

1k oel” b oxi’

gl
e,

=: (I) — (I) — (II) + (IV). (2.18)

0 0
e]ekl"]ka E,ebed F]/k,( )]

It is easy to check
(1) = [eg‘? ef"w = (de o) =0 =0, @a9)
Next we calculate

(I1) - (1I0)

_ 0 ke O 0
- [ef el e r]/k/(? E + [e{le Tk =7 0% o
/ 0 0
= €ae] € (5 18 ’k’) aed (Sdéé,r /k/a j
eee](é’F)a+e k§(5]T d
a J’ jk oe / a€c% y4 ]ka]
- k’r a+eel" +€]€]€(5F)a ”k(ar)a
e e /k/a 7 b ]ka 7 i"k a ] ]k aee
- o
= ehel e (0T — oy 1) (2.20)

oet’
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and

(IV)

I
%

0
[ ]ka g/e]e ] ( )aegrl

i / i’ / / i’ 0 5
= ehekTA TN (e] o50f + e 555@) 7 Dl T (ehodol + ekoda), ) P
d c
= eZF ,k,(eael e]ea) v (e’ebed F] s i e]el k/F] r 'k’) i(,
de de;
0
= chele, (T4l —T% r]k,) 2 (2.21)
Lastly we absorb the four terms to get
Ha, Hy) = —ehel ek (0T, — 0yT4) rirt, — T T ’
[Ha, Hp] = —eaey ec (01T )ag deaeb ( ik ]k/)aefl'
0
— k i
3 (é’ F 6 F 7'k + F F /k/ I kr]k/) aeg
0
= cle] eiRj) 2l
1
= ERabchcd- (2.22)
Next, we compute the second commutator
[Vab/ HC]
i 0 i 0 0
= [e’é] —e,]lij, a e] /k/a f/]
oe, dey,
1 6 k/ 4 0 ] K 0 k' d ] 5
= €} 0ac <axf r]k/a €,> — ejer 530 r”‘/a tele ST, 5”076{;
] 8 6 / 8 ’ 1 a
] ] b sk ek d 5]
— ea(Sbc (6){] 1—‘]k/a é’) e] 5(15 F /k/a d ec F /k/(s (Sé/aie{]
i’ g i 6 i 8 / 8 4 8
— vt | Tl ek &k
= 5(1CHb — 5bcHa — €. F]/] <€bae£/ - eéaeb ) + e I k! < ae{l ae >

— 5ach - 5bCHﬂ/ (2.23)
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and finally,
[Vabrvcd] - eéi_ ailegi/_e];i,
oe,  del, " oel oe/,
= e{](sadi] edébc 7 625%—. —+ ejcébdi]-
aeC 58,1 ae]d aea
_€a5bd7 +ed5ac +€7(5bc el —
oel. (3eb oe; oe,
= 0paVac — 02a Ve + 6ac Vipd — Ope V- (2.24)

It remains to check the final two commutator relations. To prove the first of
these, between D; and the horizontal vector field H,, we compute

; 0

[0+, Hp] = 8t,ea e]e ]kaef

= eaebétl“]k el

1, 0
= —Eeéelg(g P(Vi(08xp) + Vi(rgip) — Vp(08jk)) 5

dey
L xep d
= —5encie; et (V; (Orgxp) + Vi(018jp) — V(digix)) 26!
b
1, — — 0
= —Ee ((vatg)abc (VOt8)pac — (Vatg)wb> é’ieg
1 ¢ o~ Yt 0
= _Eec(Hﬂ&tgbc + Hbatgac Hfatgub) oe!
b
1 (9 1 g 0 ¢ 0
1 ~ 8 1
= _EHa(atgbc) < oe g + 2Hb(atgac) (2.25)
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and

1, ~ .
[Dt — 04, Ha] = [_E(atgcd)eg @’H‘l]

1~ r 0 1 0
—Ef?tgcd [35 M'H} + 5 Ha (8tgcd)ed de gl
1~ ;0 0
= =508 (5‘%18 — (6%l +5,§e]ed)l” (9eb>

0 1
atgcdédeﬁellgr]ka g (atgbc)

9
éeg

¢ 0
e}
= —EatwgcdfsﬁHd + EHa(atgbc)ef

1~ 1 ~ 0
= 5018 + 51&15,(atgbc)efafe£. (2.26)

Next, we sum equations (2.25) and (2.26) to compute the desired commuta-
tor relation

Dy, Hy) = [0, Hy] + [Dt — 0, Ha] = 8tgade+ Hb(atgac) e (227)

Finally, using equations (2.4) and (2.14), the commutator of D; and V; is

~ ;0
[Dt, V] = [at (atgcd)eg aeguvab}

1~ 0 1 0
ai‘gcd |:ed Oe g//Vﬂb:| + 2Vab(atgcd)ed de g/

1~ ¢ 0 ¢ 0 ¢ 0 o9
= Eatgcd (ffd @5? te 875'5‘? — € @5 €a 5, v 53

1/~ ~ ~ ~ ;0
+3 (5t8bd‘5? + 0180 — 018aadf — 8fgca(52) g P
Cc
=0, (2.28)
thereby proving this lemma on commuting canonical vector fields. O

Corollary 2.7. If f : F — Ris an orthonormally invariant function, then

{HaHb f—HH,f =0 229)

AuH,f — HiAuf = RepHyf,

where Regy (1) = Re () (ueq, uep).

94



2.2 PROBABILISTIC PRELIMINARIES

Proof. This is a direct application of the commutator relations from Lemma
2.6.

Since fis orthonormally-invariant, it is constant along fibres and Vcdf =0,
whence

~ ~ 1 ~
(HoHpf — HyHa) f = [Ho, Byl f = SRaveaVeaf = 0. (2.30)
Next we compute

AyH,f — H,Ayf = (HyHyH, — H,H,H,) f

- — [Ha/ Hb] Hb,,f\’
1 ~
= _iRabchcdef (by Lemma 2.6)
1 ~ ~
- ERabcd (_[Vcd/ Hb]f - Hb(vcdf))
= ReaHyf, (2.31)
which completes the proof. O

Proposition 2.8. Let f : F — R be an orthonormally invariant function.
Then

~ 1 ~ ~ ~
[Di — Ay, Half = —5(0ig + 2R¢)ap Hy f (2.32)

Proof. It readily follows from Lemma 2.6 and Corollary 2.7 that

~ ~

[Dt —Ap, Ha]f = [Dtr Ha]f - [AH/ Hu]/;
= 8 Haf + 3 HGR,0) Vo~ Re
= (B8 + 2R Hi (2.33)
thereby proving the proposition. O
2.2 PROBABILISTIC PRELIMINARIES
The principal goal of this section is to recall the notions of Brownian motion
and stochastic parallel transport in the setting of evolving manifolds as

developed in [ACT08] and [HHN18a].

We first remark that it shall hereafter be assumed that in addition to the
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Riemannian manifolds { M;} being complete as in the previous section, they
will also satisfy

sup (|Rm| + |0:g| + |Varg|) < 0. (2.34)
M

Horizontal curves {uc}.cj 7] € F, where 7 (ur) = (xr, T — T), correspond
to curves {wr} o 1) € R" (also known as the anti-development of u+) via
the following initial value problem

d a
{% = Dot Halue) 72 (2.35)

wo =0.

This definition of the anti-development in the time-dependent geometry set-
ting appropriately motivates the following stochastic differential equation
in the case of evolving manifolds

2.36
U() = Uu. ( )

{duT = Do dt + H,(Uy) o dW?
We make a short note on notation that W, ~ +/2B; refers to the Brownian
motion in R” with rescaling by a factor of v/2 such that it has quadratic
variation d[W, W], = 2d[B, B]; = 2dt and o refers to the Stratonovich
integral in differential notation.

Next, by demonstrating that this equation satisfies existence and unique-
ness criterion as well as It0’s lemma, the notions of Brownian motion, via
projection onto M, and stochastic parallel transport can be formalized.

Proposition 2.9 (cf. [HN18a]). (Existence, uniqueness and Itd’s lemma)

The stochastic differential equation (2.36) has a unique solution {Ur} o 1y
that satisfies 7p(U;) = T — T and explosion time e(U) = oo. Moreover,
T — U (w) is continuous for every Brownian path w € C([0, T],R"), and,
given f : F > Ris of class C?, then the solution U, satisfies

df(Ur) = Dof(Ur) dt + ((Hf) (Ux), dWe) + Ap (f) (Ur) dt. (2.37)

Proof. By Nash’s embedding theorem, we embed F isometrically into RY
for N » ”2% and construct a suitable smooth extension of compact support
by partitions of unity. Then there exists a unique solution of system

{Dt dt + H;(Uy) o dW/ 2.38)

U()Zuo
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2.2 PROBABILISTIC PRELIMINARIES

onRRN. By Theorem 1.2.8 of [Hsu02], using Gronwall’s lemma, the extended
solution of the stochastic differential equation on R¥ stays inside F up to
explosion time e(U). Moreover, by Theorem 1.2.9 of [Hsu02], this solution
is in fact a unique solution on F up to e(U). Also, as n-dimensional Brown-
ian motion is continuous in T for almost every path w, so it is for Us.

We now proceed by computing both dU; and the quadratic variation
d[H(U;), Wil

dug = Df dt + HY (Uy) dW] + %d[Hf(U),Wf]t

= Df dt + H} (Uy) dW] + 50 Hj (Uy) d[ub, wij,

. 1 . .
= Df dt + H} (Uy) dW] + E(?ij”(Ut)H}’ AW/, Wi,
= Df dt + Hf (Uy) dW] + 0, Hf (U H] dt. (2.39)

We are now prepared to derive the desired identity using It6 calculus in IR”

d(f(Uy))
= (VF(Uy),duhy -+ Sal (), F(u)
= (Vf(Uy), Dy dt + H;(Uy) dW] + oyH;(Up)HY dty + %aﬁa F(uyd[ut, us,
= 0.f (Uy)Df dt + H;(f)(Uy) dW]
+ (aaf(ut)abH;(ut)Hf(ut) + 2, ~(Ut)H]b(Ut)Hf(Ut)) dt
= Di(f)(Uy) dt + CH(f) (Ur), W)
+ (P H) () + (HEH))(26f) ) (L)
= Dy(f)(Us) dt + CH(f) (Ur), dWry + H] 0, (H; f) (Uy ) dt
( ),

= Di(f)(Uy) dt + CH(f) (Ur), dWe) + A (f) (Us) dt. (2.40)

By our convention (1.1), it follows that there exists a distance-like function
r: M — R with an extension 7 : 7 — R that is independent of both time
and fibre coordinates. By (2.37), it follows that the solution to (2.38) has
infinite explosion time e(U) = o and so there exists a unique solution that
always stays inside . Finally, applying (2.9) to f = 71, one gets d7p (U;) =
—dt. Combined with 71y (Up) = T, it follows that 7 (U;) = T — 7. O

We shall now continue with defining the notions of Brownian motion and
stochastic parallel transport, from [FHN18a], in the setting of time-evolving
families of Riemannian manifolds.
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2.2 PROBABILISTIC PRELIMINARIES

Definition 2.10. (Brownian motion on space time) We call w(U) = (X, T —
7) the Brownian motion on space time M = M x I with base point
w(u) = (x,T).

Definition 2.11. (Stochastic parallel transport) The family of isometries

{PT = UpU! : (Tx. M, g7—7) — (TxM, gT)} (2.41)
is called the stochastic parallel transport along the Brownian curve X-.

This Brownian motion now inherits a path based space, diffusion measure
and filtration. First, we denote by PyIR" the based path space on R", namely
the space of continuous curves {w<|wy = 0}, 1} = R".

Definition 2.12. (Based path spaces) Let P,F and P, 1) M be the based
path spaces of continuous curves,

Py F :={uc|ug =u,mp(u) =T — T}TG[O,T] c F (2.42)
and

PonyM ={7r= (2, T—=1)|70 = (x, T)} 0,17 (2.43)
respectively.

To construct the Wiener measure, we first observe that solving the stochastic
differential equation (2.36) yields a map U : hR" — P,F. Moreover, the
projection map 7t : & — M induces a map I1: P, — P 1) M.

Definition 2.13. (Wiener measure) Let I’y be the Wiener measure on path
space P)R". We then say that IP, := U.(Pp) and P(, 1) := IL.IP, are the
Wiener measures of horizontal Brownian motion on F and Brownian mo-
tion on space-time M respectively.

Moreover, we can uniquely characterize the Wiener measure in terms of
the heat kernel.

Proposition 2.14. [HN18a] Let {Tj};{:l be a partition of [0, T|, U; € M and
Y0 = (x,T). Then

P [XT]. el Vjel,.., k}

_ J o THH, T = 5|, T = ) @dVolg,_ (3) (2.44)
17

uniquely characterizes the Wiener measure on P(, 1) M.
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Proof. The proof follows as in Proposition 3.31 of [HN18a]. O

Next, we recall that the path space PyR" comes equipped with an intrinsic
filtration ZR" generated by evaluation maps {e, : PhR" — R"|e,(w) = w, ,0 < T}.

Definition 2.15. (Filtrations on P, F and P, 1)M) The filtrations on P, F
and P, 1) M are simply the respective push-forwards M= (IToU), 2R
and 7 := U, ZR".

A short reiteration of induced martingales as well as parallel and Malliavin

gradients are constructed in the time-dependent setting will now complete
this section.

Definition 2.16. (Induced martingale) Let F : P, 1yM — R be integrable.
Then, we define the induced martingale as F-(y) := E[F|X] (7).

Using this definition, the conditional expectation can now be characterized
by a representation formula.

Proposition 2.17. (Conditional expectation) [HN18a] Suppose the condi-
tional expectation is as defined. Then, for almost every Brownian curve

{’)’T}Te [0,T]”

Fe(n) = EIFE() = | F(rlon s )Py (1), (249

T

where we integrate over all Brownian curves 9/ in the based path space
P, M with respect to Wiener measure IP,, and * denotes concatenation of
the two curves |- and .

Proof. The proof follows as in Proposition 3.19 of [FIN18a]. O

To define the two notions of gradients, we first recall that cylinder functions
are of the form u o e,, where ¢, : P(X,T)M — MF are k-point evaluation
maps, namely e, : ¥ — (7119, -, Y0, ), and u : MF — R is compactly
supported.

Example 2.18. Let F(7y) := foer (y) = f(7174). Then the induced mar-
tingale of F is given for T > 11 by

)= Flons 7))

T

[ fmra) ()
Py M

T

= f(Xq), (2.46)



2.2 PROBABILISTIC PRELIMINARIES

and for T < 7y by

Fe(y) = L y F(Yljo,q ') dPo (1)

1T

- f Frv—e) AP (7))
Py M

= | FH T =Ty T =) dVe,_, )
= Hr—z, 17— f(m177). (2.47)

Definition 2.19. (Parallel gradient) Let o € [0, T] and let F : P(, 1y M — Rbe
a cylinder function. Then the o-parallel gradient is the almost everywhere
uniquely defined function vir: P, 1yM — (TxM, g7) such that

DyeF(7) = (VEE(Y), 0T mgr)s (2.48)

for almost every Brownian curve v and v € (TyM,gr), where V¢ =
P01, 71(7). Here, Dy denotes the Fréchet derivative.

Example 2.20. Let F = u o e, be a k-point function with partition {T]‘};;l.

Then the parallel gradient of F is given by

ViF= ex (Z PTjgradgT)Tu> . (2.49)

= :

Finally, we let H be the Hilbert space of W2 curves in (TyM, gr) with
vg = 0 equipped with the natural Sobolev inner product given by

T
u,vyy = Jo (e, O0) (T, M gp) AT- (2.50)

Definition 2.21. (Malliavin gradient) Let F : P, 1M — R be a cylinder
function. The Malliavin gradient is the almost everywhere uniquely defined
function V*F : P, 1yM — H such that

DyF(v) = (V"E(7),0)n, (2.51)

for almost every Brownian curve 7y and v € H, where V; = P/ 1.,
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Definition 2.22. (Skorokhod integral) The adjoint of the Malliavin gradient,
also known as the Skorokhod integral, is the uniquely defined operator
(VH)*: L2(PM) — L*(PM) such that

E[F(V*)*g] = E (V*E, 0], (252)

forall F,g € L>(PM).

Definition 2.23. (Ornstein-Uhlenbeck operator) The Ornstein-Uhlenbeck
operator is defined as

L) = (VH)*VH (2.53)

where V* and (V*)* are the Malliavin gradient and its adjoint from (2.51)
and (2.52) respectively.
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PARABOLIC PATH SPACE

For convenience of the reader, we shall first recall and prove the statement
of Bochner’s formula in the time-dependent setting.

Lemma 3.1. (Bochner) First let (M, gt)ter be a family of Riemannian manifolds
and gradlgt =g/ 0j where Ag, be the Laplace-Beltrami operator. Then the evolution
of [Vul3, is given by

3 (=00 B (Va2 @)

1
= (Vu, V(=0 + Ag )uy + |V2ul* + E(ﬁtgt + 2Rcg, ) (grad u, grad u).

Proof. We evaluate both

1 1
EAgt (\Vu|§t) = ivivi(vjuvju)

= (VZ‘V]'M) (Vivj‘u) + (Vju) (VZ‘VZ‘V]'M)
= |V2ul]® + (Vju)(VjAgu) + Reg, (grad u, grad u) ~ (3.2)

and
1 1. i i
Eatﬂv”@t) = Eatgt]vi”vju + gt]viuat(vju)
1 o i
= —Eﬁtgkggklgffviuvju +gt]Viu0t(V]-u)
=<{(Vu, V(o)) — %&gt(grad u,grad u). (3.3)

We then deduce the Bochner formula as the difference of the two results. [

Theorem 3.2. (Martingale representation theorem) If Fr : P, yM — Risa

martingale on parabolic path space and F; € D(Vg), then F; solves stochastic

differential equation

{dPT = (VIE, dW-) (3.4)

Flr—o = F.
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Proof. By approximation (cf. [HN18a, Sec 2.4]), it suffices to prove the
theorem in the case where F; is a martingale induced by a k-point cylinder
function. Namely, let F(y) = f(m197, ..., M1+, ), Where f : MF - R and
we recall that v+ = (X, T — 7). Also let Fr = [E, 1)[F|Z:] be the induced
martingale. Then, for T € (14, T/41) by Propositions 2.17 and then 2.14, we
calculate

Fo(y) = f | FOlox #7) Py, (7)
YT

— fp “ f(miyn, o MY, nl'y;m_f, e nlq/;k_f) dP.. (v

1T

— " fXe, o X Yos1s - ) HX e, T —Tlyes1, T — Teg1)

HWes1, T —t1lyes, T — To42) - HWr—1, T — Tea [y, T — )
dVngfM Yes) - AVer_., (vx)
= fT(XT1/-~-I Xz, XT)- (3.5)

Note that, for (xi,...,x) fixed, (x,T) — fr(x1,..., x4, x) is uniformly Lips-
chitz in T and solves (d; + A1) £ = 0, where AU+Y) acts on the last entry.

Consider the lift f; := fr o ®{’+1 7T © ®f+17r. Also let F; := F; oIl, where

IT: PF — PM. Then we have that F;(U) = fT(UTl,..., U, Uy), which

satisfies (D + A%H)) fr = 0 by applying Proposition 2.5. Also note that

herein we shall denote the vector (H; f,...H,f) by Hf.

Then, by Proposition 2.9, we calculate
dF:(U) = d(fr(Uy, ..., Ur, Uz))
= (H*V(f)(Uy,, ..., Uy, Uy), dWy)
+ (DT + Ag+l)> _f‘[(u’fl/ Y4 uT[/ uT) dT
= (HFY(f)(Uy, ..., Ug, Uz ), dW). (3.6)

Next, we project down to M by Proposition 2.5 as follows

H§€+1)fr(uﬁ/ oy U Uy) = (ureu)*ﬁ(uﬁ, vy Uy, Ur)
= (Uceq) fr(Xe,, - Xq,, Xz)
= (Uye,, gradéii)ff(Xn s eeer Xy X)) (T Mogr)
= (PeUlceq, Pegrady, ") fe(Xe, s Xoy X

= <u06ar v’lzlPT(r)/)>('I}M,gT)/ (37)
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whence
H{ Y (o) aWE = (VIEe (), Unen) dWE = (VIF:(7),dWe),  (38)
and we deduce that
dF(7) = dFe(U) = (VRE:(7), dWr) (3.9)
to complete the proof. O

Theorem 3.3. (Evolution of the parallel gradient) If Fr : P, )M — Riis a

martingale on parabolic path space, and o > 0 is fixed, then Vi . P Py M —
(T(x,TyM, g1) satisfies the stochastic differential equation

d(VIE) = (VIVIE, aw) + 2 (g+2Rc) (VIE) dt + VIE,d6, (1),
(3.10)

where {(§ +2Rc)(v), W)(r,m,gr) = (§¢ +2Reg )= (P; v, Py 'w) and ¢ =
d

a8

Proof. As F; is L.-measurable, we have that V(‘T‘FT = (0 for ¢ > T. Not-

ing d(VgFT) is continuous except for a jump discontinuity at o = 7, we
calculate

d(VIE) = d(VIE )cont + (vl,'ﬁ,+ — Vl,'l—"r> d6,(7)
= d(VIF)cont + VIE, d6,(T). (3.11)

It remains to show that the identity holds for o < 7. In particular, we'll
show that the continuous parts of the measures agree.

By approximation (cf. [HN18a, Sec 2.4]), it suffices to prove the theorem in
the case where F; is a martingale induced by a k-point cylinder function as
in the previous proof. Now, as ¢ is fixed, it is sufficient for us to consider
the evolution equation for T € (1, T/41), using the parallel gradient from
example 2.20,

VoFe(y) = Y. PeVY fe(Xey oo Xy Xo) + PV fr (X, oy Xy, Xo),

>0

(3.12)
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which can be lifted to the frame bundle and represented by Proposition 2.5
as

Ga(U) : = <uoea,v"PT(HU>>
= Z<UT€,1, fT Xle XTWXT>>

>0

+ <ureaz V(“_l)fr(xrlr ey XT(/ X’l’)>
= N B fe(Un, o Un, Ue) + HY o (Uny, oy U, Us). (3.13)

>0

Applying Propositions 2.8 and 2.9 and the fact that (D + A(ZH)) fr=0
from the previous proof, we have that

4G, (U)
= > H"VHP F (U, o, U, Us) dW?

T =0

+HVHVE (U, . Uy, Uy) dWE
+ 3 (Do a5™) O folU, o Uy Un) d

T =0
+ ( T + A(f—i_l)) H(Z+1)fT(uT1/“-/ uTg/ uT) dT
= > H"VHP (U, o, U, Us) AW

T =0

+HVHEYE (U, . Uy, Uy) dWE
+ Z ( (DT + A(€+1)> + [DT + A(F+1) lgk)]) fT(uﬁ/"-/ uT[/ u‘L’) dT

TkZD'
+ (HY (DT + 85 ) 4 D+ A, BTV (U, U, U dT
=N Hﬂ+1 B F Uy, ..., Uy, Up) dWE (3.14)
T =0

+ H1££+1)H1§é+1)f”f(uﬁ/ weey uTé’ UT) dw{z

1+ .~ )
+5(E+ 2R0) o (U)H ) (U, ., Uy, U dT.



BOCHNER FORMULA ON PARABOLIC PATH SPACE

Finally, we project down onto M by Proposition 2.5 as follows,

H£e+1)Hﬂ(Z+1)fT(uT1/ ceey u’[[/ UT)
= (uTeb)*(uTeﬂ>*fT(uT1/ ey uT[/ ur)

= (v(e—’_l)v(“_l)f‘r(xnru-/ X‘L’U X‘r)) (ureb/ ureu)
= (Urep @ Ure,, VIV £(X0 L Xe, X2))
= (Uge, ® Ugea, (P ® Py) (V(€+1)V(€+1)fT(XT1, XW,XT))>, (3.15)

and similarly,

H"YHP f Uy, L U, Uy)
= (Ure, ® Ur e, VEVVO £ (X, Xey, X))

= (Uge, ® Ugea, (P ® Py) (v““)v(k) Fe(Xeyy oo XTZ,XT))>, (3.16)

whence

2 (H;Hl)HF(,k))(fT)dWTan (HlSéJrl) (041) )(fr)de

T =0

< Y (P @ Py )VIIVE £ Upe, ® uoea>dw£

Tk>U

+{((Pr @ Pr) VDIV £ e, ® Uge, Y dW?

< Z PT®PTk (€+1)v(k)f‘rrdwr®u0€a>

T =0

+{(P,®P: )v<f+1 VED £, AW, ® Ugeq)

T =0

= (VIVIE(y), dW: ® Uge,). (3.17)

< Y (Pe®@ Py )VIEFIVE £ ( T®Pr>v“+1>v““>fr,dwf@uoea>

106



BOCHNER FORMULA ON PARABOLIC PATH SPACE

Finally, we check that
(8 4 2R0) o (U H Y Fo (U, .oy Uy, Uy) dT
= (¢ + 2Re) y(u1,) (Urea, Urey (VY (X, ., Xy, Xe), Urey) dT
— (¢ + 2Re) nu) (Ue (VA F (X, ., X, Xe), Ureb>ureb) dr
= (8 + 2R)rur,) (VN fe( Xy Xy Xo), Ures ) dT
= (¢ + 2R0)|i—1—c (P, VI, P Uge,) dT
= (¢ + 2Re)- (VI dt, Uge,) (3.18)
which completes the proof. O

We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. As F is Xr-measurable, we have that V(UFT = 0 for

o > 7. Noting d (VL'FT) is continuous except for the jump discontinuity at
0 = T, we calculate

dVIF P = «VIE, d(VIE))
= 2V, d(VIE) eont + (vl,'FU+ - vl,‘PU_> s, (1))
= d(|VYFe?)cont + 2| Vo Es 2 dos (T). (3.19)

It remains to show that the identity holds for ¢ < 7. In particular, it remains
to show that the continuous parts of the measures agree.

In the rightly-continuous case by It6 calculus and Theorem 3.3, we cal-
culate the quadratic variation d [V,UFT, VL‘FT] = 2|VQV‘(,|IFT|2 dtforo <1
and then
A(|V9Ee[*) = A(VyFr, d(VoEr)) +d[VoFr, VoEd]
= (VI VUF[2, W) + (¢ +2Re)<(ViF, VUE) dT  (3.20)
+ 2V Par,

which concludes the proof. O
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Corollary 3.4. (Bochner) The generalized Bochner formula on PM (Theorem
1.1) reduces to the standard Bochner formula (Lemma 3.1) in the case of 1-point
functions. That is, the evolution of |V Hr_r, 17— f|? for T < 7y is given by

1
E (aT + AgT—T) |VHT*T1/T*Tf|2

1
= ‘VZHT—Tl,T—T_ﬂZ + E(g + 2RC) ’i:T—T(vHT—Tl,T—Tf/ VHT—T1,T—Tf)~
(3.21)

Proof. Fix ¢ = 0 in the evolution equation from Theorem 1.1. Next, we shall

compute the evolution of |VL|FT|2, where

[_‘T(,)/) . {HTTllTTf(ﬂlr)’T)r T<T (322)

) T2
is the martingale induced by f (7114, ). Then, for T € [0, 71, we calculate
VOE:|(7) = [VIE|(7) = [VHr—o 1 f|(m177) (3.23)
as well as
VIVIF(7) = IV2Hr 7o fl(m17). (3.24)
By Theorem 1.1, we then deduce that

d(|VHr—q 1—<f2) = (VU V Hr_q 7|2, dWy)

= 2|V Hr—q, 1 f 2 AT + (§ 4+ 2R0)[i=1— (VH1_v, 71 f, VH1_5, 71 f ) dT

(3.25)

Moreover, for process X; = |[VHr_v 17—+ f 2(T1y2), by applying It6 calcu-
lus as in Proposition 2.9, we have that

d(|V Hr—q 7—<f2) = (VU V Hr_q 7%, dWy)
= (0r + Agy ) [VHr_q - f|* dT. (3.26)

Therefore, by comparing equations (3.25) and (3.26), we conclude that

((% + AgT_T) |VHT—T1,T—Tf|2

N =

1, .
= ‘vzHTle,Tfo‘z + E(g + ZRC) ’t:Tfr(VHTfrl,Tfrf/ VHTle,Tfo)/
(3.27)
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which completes the proof. O



APPLICATIONS OF THE
BOCHNER FORMULA ON
PARABOLIC PATH SPACE

We shall now proceed by applying the Bochner formula on path space to
both characterize the Ricci flow and develop gradient and Hessian estimates
for martingales on parabolic path space.

4.1 PROOF OF THE BOCHNER INEQUALITY ON PARABOLIC PATH
SPACE

Proof of Theorem 1.2. Using the formalism developed in the last section, we
shall prove the equivalencies between the main estimates that characterize
the Ricci flow.

(R1) = (Cl) == (C2) == (C3):If (M, gt)ter evolves by Ricci
flow digt = —2Rcy, and Fr : P, 1) M — R is a martingale on parabolic path
space, then Theorem 1.1 gives

dVIE? = (VIVIER awey + 2 VIVIE R dt + 2| VIE 2ds, (1), (4.1)
thus proving (C1).

Next, to show (C2), calculate

2
g (VIviE) ’ <IgTPIVOVIE = n|VIVIEP,  (42)

A F = )
ij

and finally show (C3) by simply dropping the non-negative term 2 ]A(lf‘,rl-} |?
in (C2).
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(Cl) = (C4) < (C5): To prove (C4), first apply It6’s lemma to
the left-hand side of the full Bochner inequality (C1) to get
2| Vg Fe (VR VoFe|, dWe) + 2| ViV Ee dt + 2| Vo F, o (1)

= (VIIVIER, dawy + 2/ VIV IE 2 dr + 2|V IE, %6, (1)

(1)
< d|VIE?

= 2| VUE| d|VE| +d || VUF], [VIE]
= 2| VyE | d|VyF| + 2| VI VIE |2 dr
<2|VIF | d|VIE | + 2| VIVIE |2 dr. (4.3)
Rearranging this inequality and applying (C1), we derive (C4), namely
d|VyFr| > (V| VIE], dWz) + [V F|dos(T). (4.4)

Finally, (C4) is satisfied if and only if F; is a submartingale (cf. Theorem
3.2) (C5) also holds. The remaining equivalencies will be proved in tandem
with the results in the subsequent few theorems. O

4.2 PROOF OF GRADIENT ESTIMATES FOR MARTINGALES

Proof of Theorem 1.3. (C5) == (G1) == (G2): The implication of (G1)
follows from the definition that if T — |V(|T‘FT| is a submartingale for every
0> 0,thenfor? >, \Vl,'l-}\ <E |:|V(|7|P—[-‘ ‘ZT] . Finally, to prove (G2), apply
(G1) and Cauchy-Schwarz to get

VIRP < (E [!VL’&MZTDZ <E [|[VIRPIZ| - B[S = E [|[ VIR,

(4.5)

The converse implications shall be proven along with later results. ]
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4.3 PROOF OF HESSIAN ESTIMATES FOR MARTINGALES

Proof of Theorem 1.4. (C1) = (H1): To prove (H1), fix ¢ > 0 and then
integrate (C1) from 0 to T as well as take expectations

E(r) |[VIFR] B [ VI

(C1)

T
> B JO<VT|VLFT|2,dwT>

T
+2E, 1 JO |VuVU|FT|2dT]

== ZIE (x,T)

T
fo IVIVIE? dT] - 4.6)

(H1) = (H2): To prove (H2), apply Itd isometry and then integrate
(H1) from 0 to T with respect to o as well as take expectations

T
f wiEp da]
0

T
L IVILE12 da] (4.7)

T T
f J \VIVIE2dr d(r] .
0 JoO

(R1) = (H3): To prove (H3), let G = F? and consider the evolution
equation for X; := G7!|V"G;|> — 2G; log(G:), which satisfies

E (1) [(P —Eq [F])z] =E( 1)

(H1)
< IE (X,T)

—2E(, 1)

T
Xz = (ViXe,dW:) +2G, (J IViv!iog(G:) 2 dcr) dt
0
T
+G;! (f (¢ + 2R0)(VIF, VIE) da) dt
0

T
> (VX dWp) +2G. ( fo yvlvglog(cr)\zda> dt  (48)

by Itd calculus and Proposition 3.3 (cf. Proposition 4.23 of [HN18b]). Next,
integrate the inequality (4.8) from 0 to T with respect to T and take expecta-
tions to get

E (1) [X1] = E,1)[Xo0] = 2E 4y 1

T
Gr (f |V¥vl,'10g(GT)|2da> dT] )
0
(4.9)

112



4.4 PROOF OF THE CHARACTERIZATIONS OF SOLUTIONS OF THE RICCI FLOW

and evaluating the two expectations in the difference, namely

E (1) [Xo] = E(,1)[Gy IV Gol* — 2Go log(Go)]
=0-— 2G0 log(Go)

= —2E(, 1) [F?] log (E (7 [F?]) (4.10)
and
E(.1)[Xr] = E( 1) [Gfl\VHGF - ZGIOg(G)}
= E(op) |[F2VP| = 2B, 1) [Flog(F?)]
= 4E (1) [[VFR] ~ 2By q) [FPlog(F)] . @11)

Finally we observe that

E(xm) [\VHHZ] =Eqr

T
J V)2 d(f] , (4.12)
0

and then combine this and the aforementioned results to prove the claim.
O

4.4 PROOF OF THE CHARACTERIZATIONS OF SOLUTIONS OF THE
RICCI FLOW

The following result reproves a theorem by Haslhofer and Naber (cf. The-
orem 1.22 of [HHN18a]), characterizing solutions of the Ricci flow, using
the Bochner formulas on path space that were developed in the previous
section.

Proof of Theorem 1.5. (G1) = (R2): To prove (R2), we evaluate (G1) at
c=1=0,

Vo [Fl] = ViRl ‘€ B [[VAFIS0] = Egor) [IVAF]. 413)
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(G2) = (R3): To prove (R3), we evaluate (G2) at o, T = 0 (and observe
that d[F, F]; = 2]V¥FT|2 dt by Theorem 3.2),

E (1) [d[il'f]r} =2E (1) [quFAZ}
(g) 2E 1) [E(X,T) [!VuF IZIZTH
<2E( 1) [|VHF|2} . (4.14)

(Gl) = (R4): To prove (R4), we set ¢ = T and take expectations

Eqm) {!V(‘T‘Fa\] <Eqr) [IE(x,T) [\VEFHZUH =E( 1) [[VL‘F@ . (415)

Then follow the proof of (H3) in Theorem 1.4 and evaluate the expectation
E (x,1) [XT]] for j € {1,2}, namely

Eon)[Xo] = (o) [G;jl|v7fcrj|2} —2E 1) [GT]. log(GTj)} (4.16)

and taking differences, where E(x 1) [Xo | Zq] — E (1) [Xg | Zq] = 0,asin
the earlier proof. It remains to check that

Eer) (G5! IVHGal | 24| — Er) |62l IVHGq |24

- 41E(x,T) _|VHFT2|2 | Z‘Tli|
-

= 41E(x,T) j |v17|1:-[2|2 d(T:|

LJ Ty

.
<A4E (1) J ]V(‘T‘Flz dd} (t— |V(‘7‘FT|2 is a submartingale)

LJ Ty

— 4B, 1) _<P,L‘(T1,T2)F>H} . (4.17)
(G2) = (R5): To prove (R5), we set ¢ = T and take expectations

Eqm) “VL‘FAZ} <Eqm [E(x,T) |:|V(U’F|2‘Z(T:|:| =E( 1) [\VuFﬂ . (418)
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Then follow the proof of (H2) in Theorem 1.4 and apply It6 isometry
Z’Tl ]

< Egr) _<F,/~’<T1,T2)F>H} : (4.19)

[T
IE(x,T) [(FTZ - 1:1_1)2 ‘ Z’Tl] = 1E(x,T) L ‘vt'T'FTz‘z do

™ ol
:lE(x,T) f ‘VUFTZ‘2610':|

LJ T

The converse implications shall be proven in the next section. O

4.5 CONVERSE IMPLICATIONS

We shall now prove the converse implications below.
Proof. (C3) = (R1): First fix (x, T) € M and v € (TyM, g7) a unit vector
and choose a smooth compactly supported f; : M — R such that

A(x) =0, Vfi(x)=0v, V?f(x)=0 (4.20)

using exponential coordinates. Consider the one-point cylinder function
given by F(v) = fi(mm(v(e))), F : P, ryM — R and observe for T < e
that

VIF = PoVHr orfi(mm(1(7))),  [VAVYE] = [V2Hr o1 fil (7 (7(1)))-

(4.21)
In particular, VIE =0+ o(e) and \vﬁvg'ay = o(¢). Then, by Theorem 1.1,
T |VIE[ - LT (2R + (¢ +2R)(VIE, VIE) ) dp  (422)

is a martingale. So, in particular,
VIRR=E [\vgaﬂ — (g +2Rc)e(0,0) + 0(e). (4.23)

Moreover, since T — \VQ F:|? is a submartingale by (C3), it follows that

(¢4 2Rc)e(v,v) = e Lo(e). (4.24)
Next choose a smooth compactly supported f> : M x M — R such that

fa(x,x) =0, V(l)fz(x,x) =20, V(Z)fz(x,x) = -0, szz(x,x) =0,
(4.25)
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for example f>(y,z) = 2f1(y) — fi(z). Consider the two-point cylinder
function given by F(y) = f2(rtm(7(0)), tm(y(e))), F & Py, ryM — R and
observe for T < ¢ that

vlE, — VO f(x, ma((1))) + PeVHP 1 fo(x, aa((7)))

VIE = PVHY L folx, mu(v(7)))

VIVIE] < |V2Al(x ma(1(0) + IV2HE 1 fol (x, m (7 (1))
(4.26)

In particular, V‘O‘FT =v+4o(e), VIE = v+ o(e) and |V¥Vl)|l-}| = o(e).
Then, again by Theorem 1.1,

VIR =B |[VIEP| + (g +2Re)e(0,0) + ofe). (4.27)

Moreover, since T — |Vl)| F;|? is a submartingale by (C3), it follows that
(¢ +2Rc)e(v,0) < T lo(e). (4.28)

We can then deduce that (R1) is satisfied by taking ¢ — 07 in equations
(4.24) and (4.28).

To check the remaining converse implications, one can substitute 1-point
and 2-point cylinder functions as above. However, there are some alterna-
tive tools that can close the loop of equivalencies more readily. For example,
applying the log-Sobolev equality to F> = 1+ ¢G in (R4) gives the Poincaré
inequality in (R5). Moreover, dividing by T — 7, taking T — 7 — 0" and
using the quadratic variation d[F, F|; = 2| V'JFT\Z dt (by Theorem 3.2), (R3)
can be derived from (R5). In short, some implications can be done directly
without the need to appeal to test functions each time. O
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