STAC63 Final Exam

Due by: Saturday, April 19 at 16:00 EST via CrowdmarkNumber of questions: 6Time: 3 hours + 20 minutesTotal points available: 70

1. (8 points) Capa plays either one or two chess games every day, with the number of games that she plays on successive days being a Markov chain with transition probabilities

 $P_{1,1} = 0.2,$ $P_{1,2} = 0.8,$ $P_{2,1} = 0.4,$ $P_{22} = 0.6.$

Capa wins each game with probability $\frac{1}{2}$. Suppose she plays two games on Monday.

- (a) (2 points) What is the probability that she wins all the games she plays on Tuesday?
- (b) (3 points) What is the expected number of games that she plays on Wednesday?
- (c) (3 points) In the long-run, on what proportion of days does Capa win all her games?

- 2. (15 points) Let $S = \mathbb{N} = \{0, 1, ...\}$ be a state space and let $\{X_n\}$ be a Markov chain on S with $X_0 = a > 0$ and with transition probabilities given by $P_{00} = 1$, and for i > 0, $P_{i,i\pm 1} = \frac{1}{2}$, with $P_{ij} = 0$ otherwise. Also let $T := \inf\{j \ge 0 \mid X_j \in \{0, a + b\}\}$.
 - (a) (3 points) Show that $\{X_n\}$ is a martingale. What is $\mathbb{E}[X_n]$?
 - (b) (3 points) Compute $\mathbb{P}(X_T = a + b)$.
 - (c) (3 points) Show that $X_n \xrightarrow{p} 0$.
 - (d) (3 points) Show that $\{Y_n = X_n^2 n\}$ is a martingale.
 - (e) (3 points) Compute $\mathbb{E}[T]$.

- 3. (8 points) A certain scientific theory supposes that mistakes in cell division occur according to a Poisson process with rate 2.5 per year, and that an individual dies when 196 such mistakes have occurred. Let T denote the lifetime of an individual. Assuming this theory, find
 - (a) (2 points) $\mathbb{E}[N(T)]$ and $\mathbb{V}(N(T))$,
 - (b) (3 points) $\mathbb{E}[T]$,
 - (c) (3 points) $\mathbb{V}(T)$.

- 4. (15 points) Let $\{N(t), t \ge 0\}$ be a non-homogeneous Poisson process with intensity function $\lambda(t)$. Also assume $s \le t$.
 - (a) (3 points) Compute $\mathbb{E}[N(s)N(t)]$.
 - (b) (3 points) Compute $\mathbb{E}[N(s)N(t) | N(s)]$.
 - (c) (3 points) Compute $\mathbb{E}[N(s)N(t) | N(t)]$.
 - (d) (3 points) Find constants a_t and b_t such that

$$\frac{N(t) - a_t}{b_t} \xrightarrow{d} \mathcal{N}(0, 1)$$

as $t \to \infty$.

(e) (3 points) Let $X(t) = N(t) - \int_0^t \lambda(s) \, ds$. Show that $\{X(t)\}_{t \ge 0}$ is a martingale.

- 5. (12 points) Let $\{B(t)\}_{t\geq 0}$ and $\{C(t)\}_{t\geq 0}$ be two independent Brownian motions. Also let $\rho \in (0,1)$ and $D(t) := \rho B(t) + \sqrt{1 \rho^2}C(t)$ for $t \geq 0$.
 - (a) (3 points) Compute $\mathbb{E}[D(s)B(t)]$ for $0 \le s \le t$.
 - (b) (3 points) Show that $\{D(t)\}_{t\geq 0}$ is a standard Brownian motion.
 - (c) (3 points) Compute $\mathbb{E}[D(s)^2 B(t)^2]$ for $0 \le s \le t$.
 - (d) (3 points) Let $X(t) = x_0 + \mu t + \sigma B(t)$. Compute $\mathbb{E}[X(t)^2]$.

6. (12 points) Let
$$Y(t) = e^{-\kappa t} \left(y_0 + \sigma \int_0^t e^{\kappa u} dB(u) \right)$$
. Also let $Z(t) = Y(t)^2$ for $t \ge 0$.

- (a) (3 points) Compute $\mathbb{E}[Y(t)]$.
- (b) (4 points) Compute Cov(Y(t), Y(s)) for $0 \le s \le t$.
- (c) (2 points) Is Y(t) a Gaussian process? Is it a stationary process?
- (d) (3 points) Using Itô's lemma, find a formula for dZ(t).
- (e) (2 points) *Bonus:* The answer is?