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INTERACTION BETWEEN LONG INTERNAL WAVES AND FREE SURFACE

WAVES IN DEEP WATER

ADILBEK KAIRZHAN, CHRISTOPHER KENNEDY AND CATHERINE SULEM

Abstract. We consider a density-stratified fluid composed of two immiscible layers separated by a
sharp interface. We study the regime of long internal waves interacting with modulated surface wave
packets and describe their resonant interaction by a system of equations where the internal wave
solves a high-order Benjamin-Ono (BO) equation coupled to a linear Schrödinger equation for the
envelope of the free surface. The perturbation methods are based on the Hamiltonian formulation for
the original system of irrotational Euler’s equations as described in Benjamin-Bridges [6] and Craig-
Guyenne-Kalisch [12]. We also establish a local wellposedness result for a reduced BO-Schrödinger
system using an approach developed by Linares-Ponce-Pilod [40].

1. Introduction

Oceans are stratified into layers of differing densities due to temperature or salinity gradients, which
induce internal waves, or waves that propagate along the interface between the layers. Thermoclines, or
temperature gradients, commonly occur in tropical seas while pycnoclines, otherwise known as salinity
gradients, are typically found in fjords. Understanding the formation and propagation of internal waves
has been the object of intense studies due to their importance in oceanography and geophysical fluid
dynamics. Internal waves can affect measurements of currents and undersea navigation as well as
offshore construction structures by imposing significant amount of stress. They also have an influence
on the mixing of different layers of water in the ocean.

Due to the technological progress over the past several decades, it has become possible to observe
and accurately measure internal waves in the oceans. One of the early measurements have been
taken by Perry and Schimke [47] in the Andaman Sea, where internal waves of 80 meters high with
wavelengths of 2000 meters and a thermocline situated at roughly 500 meters deep in the 1500 meters
deep sea were found. Surprisingly, as it was observed in [47] and later by Osborne and Burch [44], the
presence of internal waves results in the presence of short, choppy, small-amplitude waves or “rips”
followed by calmness of the sea after its passage, the phenomena known as the “mill pond” effect.
The phenomena was already known a long time ago, without any scientific explanations, to Vikings
as ”dead water”, where ships get trapped in the calm water and moved back and forth by underwater
forces [19]. We refer to the work of Helfrich and Melville [26] for a more detailed overview of internal
waves.

The existence of solitary waves in internal layers of a stratified fluid was investigated in an early
paper of Peters and Stoker [48]. In this article, they considered a two-layer system of finite depth
with a free surface and a free interface, and derived a criterion for the sign of a soliton-like wave at
the interface. In [4], Benjamin studied an analogous problem with a rigid lid boundary condition on
the upper surface using the KdV model. The work was later extended by Benjamin [5] and Ono [43]
to deep water case, who showed that the evolution of long internal waves follows the now well-known,
Benjamin-Ono equation. Similar result in the framework of KdV equation was obtained by Benney [8]
in shallow water for both the free surface and rigid lid cases. Later in 1970s, Joseph [29] and Kubota,
Ko and Dobbs [38] derived the Intermediate Long Wave equation to describe the propagation of long
internal waves in case of a finite depth. Higher-order corrections to the above models were obtained
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by Craig, Guyenne and Kalisch in [12] using the framework of Hamiltonian perturbation theory. Their
results recovered, in particular, an extended KdV equation found in Kawahara [30].

The modeling theory for internal waves continued to develop assuming the presence of more physical
variables. For example, the effect of a depth-dependent horizontal shear flow on internal waves was
studied by Grimshaw [23] in shallow and deep water cases. As a result, the KdV and Benjamin-
Ono equations were derived with non-constant coefficients depending on a variable identified with
a coordinate of a ray along which the wave propagates. Choi in [10] analyzed the interaction of a
linear shear current with large amplitude internal waves. Under the Boussinesq regime of a small
density jump between the layers, it was found that the direction of a shear current significantly affects
the properties of a soliton-like wave. Khusnutdinova and Zhang in [35] considered, additionally, the
effect of non-trivial geometry of waterfronts on the evolution of the surface and internal waves in
three-dimensional fluid of finite depth. Assuming the shape of the waves is curvilinear, they derived a
cylindrical KdV-type equation for the amplitude of the waves, and developed a theory describing the
distortion of the curvilinear waves by the shear flow.

A characteristic change in the reflectance of the water surface and the observed in [47] ”ripple
effect” have provided empirical evidence of coupling between the surface and internal waves. The
strength of the interaction depends on the relation between the following properties of the waves:
(A) their length scales and (B) their group and phase velocities. The studies of (A) in the literature
are mostly subdivided into two possibilities. The first is when the length scales of the surface and
internal waves are comparable, e.g. Gear and Grimshaw [22] and Păraŭ and Dias [45]. In [22] the
authors also considered the relation between the phase velocities of the wavefronts and observed the
strong interaction in the case where the phase velocities are almost equal, which leads to a coupled
KdV-KdV system. In the case where the phase velocities differ by a quantity O(1), they observed the
weak interaction leading to an uncoupled KdV-KdV system. The second possibility in studies of (A)
is when the internal and surface waves have different length scales, which are usually described by a
long internal wave interacting with modulated quasi-monochromatic surface waves. In the case of the
finite depth, this leads to the coupled system composed of the KdV equation, describing the evolution
of the internal wave, and a Schrödinger equation for the evolution of the surface wave, e.g. Kawahara,
Sugimoto and Kakutani [31], Hashizume [24] and Funakoshi and Oikawa [21]. All of these works
studied the effect of the resonant interaction of the waves, when the group velocity of the short wave
coincides with the phase velocity of the long wave, on the coupling of the system and the form of its
solutions. In [21] Funakoshi and Oikawa also derived the Benjamin-Ono – Schrödinger system for the
case of a deep fluid. Further analytical study of the resonant interaction of internal and surface waves
in finite depth, including detailed mathematical description of the “ripple” and “mill pond” effects,
was provided in Craig, Guyenne and Sulem [15] who showed that the surface signature is generated
by a process analogous to radiative absorption.

The main goal of this paper is to continue the study of the interaction between long internal waves
and quasi-monochromatic free surface waves of a density-stratified two-layer fluid in deep water.
Using the perturbation Hamiltonian theory, we derive a coupled system describing the evolution of
the waves and explicitly provide the non-linear coupling coefficients, which are dependent on the
physical parameters of the system. In our derivation, as a part of the reduction process, we naturally
come up with the resonant condition when the group velocity of the surface wave coincides with the
phase velocity of the longer-scale internal wave. Our results extends the previously obtained system
of Funakoshi and Oikawa [21] by including the contribution of higher-order terms. The latter is made
possible by assuming that the amplitude ε1 of the surface waves is smaller than the amplitude ε of
the internal waves and satisfies the relation ε3/2 < ε1 < ε.

The two-dimensional fluid domain consists of two immiscible fluids separated by a free interface,
which idealizes a sharp thermocline or pycnocline. We follow the approach known since Zakharov [52],
in which the water wave equations are expressed as a Hamiltonian system. The Hamiltonian formu-
lation, for which the Hamiltonian identifies with the total energy is written in terms of canonically
conjugate variables (η, η1, ξ, ξ1) that corresponding to the elevations and traces of quantities related
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to the velocity potentials of the interface and surface, respectively. Following the works of Benjamin-
Bridges [6], Craig and Sulem [16] and Craig, Guyenne and Kalisch [12], we rewrite the Hamiltonian
in terms of the Dirichlet-Neumann operators for the free interface G(η) and surface G1(η, η1), which
according to Coifman and Meyer [11] are analytic near η = ξ = η1 = ξ1 = 0. This allows to expand the
Hamiltonian functional H accordingly. The quadratic part of H , denoted H(2), is derived in Section 3,
while the cubic part H(3) is derived in Section 4. In Section 5, we introduce the scaling regime, which
corresponds to a long internal wave and a near-monochromatic surface wave. Under this regime, we
obtain the leading terms of H(2) and H(3). From the reduced Hamiltonian, we derive in Section 6
a higher-order Benjamin-Ono (BO) equation coupled to a linear Schrödinger equation describing the
time evolution of the internal wave and surface wave envelope, respectively. In the last two sections,
we establish a local well-posedness result for a reduced coupled BO-Schrödinger system. The main
difficulties are the second-order derivatives in the nonlinear terms of the BO equation, which is taken
care of by using a gauge transformation following the approach of Linares, Pilod and Ponce [40], and
the presence of coupling terms.

2. Formulation of the problem

2.1. Euler equations. We consider a two-dimensional fluid domain composed of two immiscible
fluids separated by a free interface {y = η(x, t)} into lower and upper regions given by

S(η) = {(x, y) : x ∈ R, −∞ < y < η(x, t)},
with the fluid density ρ, and

S1(η, η1) = {(x, y) : x ∈ R, η(x, t) < y < h1 + η1(x, t)},
with the fluid density ρ1, respectively. We assume the system is in stable configuration (ρ > ρ1). In
such setting, the fluid motion is assumed to be a potential flow with velocities u(x, y, t) = ∇φ(x, y, t)
in S(t; η) and u1(x, y, t) = ∇φ1(x, y, t) in S(t; η, η1) in each fluid region. The two velocity potentials
satisfy

∆φ = 0, in S(t; η)

∆φ1 = 0, in S1(t; η, η1).
(2.1)

At the deep bottom, we assume the boundary condition φ(x, y) → 0 as y → −∞.
At the interface between the two fluid domains, we impose two kinematic boundary conditions and

the Bernoulli condition of balance of forces. Denoting ν̂ the exterior unit normal pointing out of the
free interface, the two equations addressing the kinematic conditions on the interface are

∂tη = ∂yφ− (∂xη)(∂xφ) = ∇φ · ν̂
√
1 + |∂xη|2 (2.2)

and

∂tη = ∂yφ1 − (∂xη)(∂xφ1) = −∇φ1 · ν̂
(
−
√
1 + |∂xη|2

)
. (2.3)

The balance of forces implies

ρ

(
∂tφ+

1

2
|∇φ|2 + gη

)
= ρ1

(
∂tφ1 +

1

2
|∇φ1|2 + gη

)
, (2.4)

where g is the acceleration due to gravity.
On the upper free surface {y = η1(x) + h1}, the velocity potential, φ1 and the surface elevation

function, η1, satisfy the kinematic condition

∂tη1 = ∂yφ1 − (∂xη1)(∂xφ1) = ∇φ1 · ν̂1
√
1 + (∂xη)2, (2.5)

where ν̂1 is the unit exterior normal to the upper the free interface, and the Bernoulli condition

∂tφ1 +
1

2
|∇φ1|2 + gη1 = 0. (2.6)
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2.2. Hamiltonian formulation. We introduce the canonical variables which allow to rewrite the
equations of motion of the free interface and the free surface as the Hamiltonian system, following
Benjamin and Bridges [6] and Craig, Guyenne and Kalisch [12]. These involve the free boundaries
η and η1, and their canonically conjugated variables expressed in terms of the traces of the velocity
potentials on the boundaries

ξ(x, t) := ρφ(x, η(x, t), t) − ρ1φ1(x, η(x, t), t),

ξ1(x, t) := ρ1φ1(x, h1 + η1(x, t), t).

Equations (2.1)-(2.6) take the following canonical form in terms of the variables (η, ξ, η1, ξ1),

∂t




η
ξ
η1
ξ1


 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0







δηH
δξH
δη1

H
δξ1H


 , (2.7)

where the Hamiltonian H is the sum of the kinetic energy K and the potential energy V ,

H = K + V. (2.8)

Here, the kinetic energy is the weighted sum of the gradients of the two potentials of the velocity flows

K =
1

2

∫

R

∫ η(x)

−∞
ρ|∇φ(x, y)|2 dy dx+

1

2

∫

R

∫ h1+η1(x)

η(x)

ρ1|∇φ1(x, y)|2 dy dx, (2.9)

while the potential energy is given by

V =
1

2

∫

R

g(ρ− ρ1)η
2(x) dx +

1

2

∫

R

gρ1
(
(h1 + η1)

2(x) − h2
1

)
dx. (2.10)

The flow of the Hamiltonian system (2.7) preserves the momentum, I, given by

I :=

∫

R

(
ρ

∫ η

−∞
∂xφdy + ρ1

∫ h1+η1

η

∂xφ1 dy

)
dx. (2.11)

Indeed, one can verify that I Poisson commutes with H .

2.3. Dirichlet-Neumann operators. We further rewrite the Dirichlet integrals of the kinetic energy
(2.9) using the Dirichlet-Neumann operators (DNOs) for the two-fluid domains. The DNO for the
lower fluid domain is defined as

G(η)φ(x, η(x, t), t) = ((∇φ) · ν̂)(x, η(x))
√

1 + |∂xη|2, (2.12)

where ν̂ is the exterior unit normal used in (2.2). For the upper fluid, the DNO is in matrix form due
to the contribution from the traces of the velocity potential φ1 on the boundaries η and η1, and is
defined as(

G11(η, η1) G12(η, η1)
G21(η, η1) G22(η, η1)

)(
φ1(x, η(x, t))

φ1(x, h1 + η1(x, t))

)
=

(
−
√
1 + |∂xη|2(∇φ1 · ν̂)|y=η√

1 + |∂xη1|2(∇φ1 · ν̂1)|h1+η1

)
. (2.13)

The Hamiltonian for the free interface and free surface problem in (2.8) becomes

H =
1

2

∫

R

(
ξ ξ1

)( G11B
−1G −GB−1G12

−G21B
−1G ρ−1G22 − ρρ−1

1 G21B
−1G12

)(
ξ
ξ1

)
dx

+
1

2

∫

R

g(ρ− ρ1)η
2 dx+

1

2

∫

R

gρ1
(
(h1 + η1)

2 − h2
1

)
dx,

(2.14)

where

B(η, η1) = ρG11(η, η1) + ρ1G(η). (2.15)

We recall the expressions for the Taylor expansions of DNO operators in (2.12)-(2.13) in powers
of the elevations η and η1. From Craig and Sulem [16], Craig, Guyenne and Kalisch [12] and Craig,
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Guyenne and Sulem [14], it is known that one can write G(η) and Gij(η, η1) for the lower and upper
fluid domains S(η) and S1(η; η1), respectively, as

{
G(η) = G(0)(η) +G(1)(η) +O(η2),

Gij(η, η1) = G
(0)
ij (η, η1) +G

(1,0)
ij (η, η1) +G

(0,1)
ij (η, η1) +O(|(η, η1)|2), i, j ∈ {0, 1},

(2.16)

where the G(m)(η) are homogeneous of degree m in η, and the G
(m0,m1)
ij are homogeneous of degrees

m0 in η and m1 in η1. The series in (2.16) are known to converge for sufficiently small η and η1 [20],
and their homogeneous terms can be found explicitly according to recursive relations given in [16] and
[14]. Denoting D = −i∂x, we have

{
G(0)(η) = |D|,
G(1)(η) = DηD − |D|η|D|, (2.17)

where |D| is a pseudo-differential operator acting as a Fourier multiplier |k|. Alternatively, |D| can
be expressed using the Hilbert transform H defined by

Hh(x) := p.v.
1

π

∫

R

h(y)

x− y
dy. (2.18)

It is known that H = −i sgn(Dx) and the relation |D| = ∂xH holds.
For Gij we have (

G
(0)
11 G

(0)
12

G
(0)
21 G

(0)
22

)
=

(
D coth(h1D) −Dcsch(h1D)
−Dcsch(h1D) D coth(h1D)

)
, (2.19)

(
G

(10)
11 G

(10)
12

G
(10)
21 G

(10)
22

)
=

(
D coth(h1D)ηD coth(h1D)−DηD −D coth(h1D)ηD csch(h1D)

−D csch(h1D)ηD coth(h1D) D csch(h1D)η csch(h1D)

)
, (2.20)

(
G

(01)
11 G

(01)
12

G
(01)
21 G

(01)
22

)
=

(
−D csch(h1D)η1D csch(h1D) D csch(h1D)η1D coth(h1D)
D coth(h1D)η1D csch(h1D) −D coth(h1D)η1D coth(h1D) +Dη1D

)
.

(2.21)
From the explicit formulas above, we also find the expansion of the operator B defined in (2.15) and
appearing in (2.14):

B =
(
ρG

(0)
11 + ρ1G

(0)
)
+
(
ρG

(10)
11 + ρG

(01)
11 + ρ1G

(1)
)
+O(|(η, η1)|2)

=: B0 +B(1) +O(|(η, η1)|2).
(2.22)

3. Linear analysis

We derive the linearized equations for the Hamiltonian system (2.7). To do so, we extract the
quadratic part, H(2), of the Hamiltonian H in (2.14). We also introduce a canonical transformation
which allows to diagonalize H(2).

3.1. Quadratic Hamiltonian. To extract H(2) from H in canonical variables, we use the leading
terms in the Taylor expansions of the operators given in (2.16) and (2.22). We obtain

H(2) =
1

2

∫

R

[
ξ

|D| coth(h1D)

ρ coth(h1D) + ρ1sgn(D)
ξ − 2ξ

|D|csch(h1D)

ρ coth(h1D) + ρ1sgn(D)
ξ1

+ ξ1
|D| coth(h1D) + ρ

ρ1
D

ρ coth(h1D) + ρ1sgn(D)
ξ1 + g(ρ− ρ1)η

2 dx+ gρ1η
2
1

]
dx.

(3.1)
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Then, from (2.7), the linearized equations of motion can be written as follows:

∂t




η
ξ
η1
ξ1


 =




0 |D| coth(h1D)
ρ coth(h1D)+ρ1sgn(D) 0 − |D|csch(h1D)

ρ coth(h1D)+ρ1sgn(D)

−g(ρ− ρ1) 0 0 0

0 − |D|csch(h1D)
ρ coth(h1D)+ρ1sgn(D) 0

|D| coth(h1D)+ ρ
ρ1

D

ρ coth(h1D)+ρ1sgn(D)

0 0 −gρ 0







η
ξ
η1
ξ1




The dispersion relation for this system is

ω4 − gρ|k| 1 + coth(h1|k|)
ρ coth(h1|k|) + ρ1

ω2 + g2(ρ− ρ1)k
2 1

ρ coth(h1|k|) + ρ1
= 0 (3.2)

with roots

ω2(k) =
g(ρ− ρ1)|k|

ρ coth(h1|k|) + ρ1
; ω2

1(k) = g|k|, (3.3)

where ω2(k) is associated with the interface, while ω2
1(D) with the surface wave. Note that ω2(k) is

the limiting value, as h → ∞, of

ω2(k) =
1

2
gρk

1 + tanh(hk) coth(h1k)

ρ coth(h1k) + ρ1 tanh(hk)

− 1

2
gk

ρ2(1− tanh(hk) coth(h1k))
2 + 4ρρ1 tanh(hk)(coth(h1k)− tanh(hk)) + 4ρ21 tanh(hk)

2

ρ coth(h1k) + ρ1 tanh(hk)
,

(3.4)
which corresponds to the dispersion relation in finite depth.

3.2. Normal mode decomposition. As in [15], the surface and interface waves are coupled at first
order in the Hamiltonian. To decouple the waves, we perform a normal mode decomposition using
the canonical transformation




µ
ζ
µ1

ζ1


 =




a−
√
g(ρ− ρ1) 0 b−

√
gρ1 0

0 a−√
g(ρ−ρ1)

0 b−√
gρ1

a+
√
g(ρ− ρ1) 0 b+

√
gρ1 0

0 a+√
g(ρ−ρ1)

0 b+√
gρ1







η
ξ
η1
ξ1


 , (3.5)

where a±, b± are the Fourier multipliers

a±(D) =
(
2 +

θ2

2
± θ

2

√
4 + θ2

)−1/2
, b±(D) =

a±(D)

2
(θ ±

√
4 + θ2),

θ(D) =
Qc(D)−Qa(D)

Qb(D)

and the coefficients appearing in (3.6) are

Qa = g(ρ− ρ1)G
(0)B−1

0 G
(0)
11

Qb = −g
√
ρ1(ρ− ρ1)G

(0)B−1
0 G

(0)
12

Qc = gG(0)B−1
0 (ρ1G

(0)
11 + ρG(0)).

(3.6)

After this transformation, the quadratic part of the Hamiltonian (3.1) simplifies to

H(2) =
1

2

∫

R

[
ζω2(D)ζ + µ2 + ζ1ω

2
1(D)ζ1 + µ2

1

]
dx, (3.7)
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where ω2(D) and ω2
1(D) are the eigenvalues of the symmetric matrix

(
Qa(D) Qb(D)
Qb(D) Qc(D)

)
and have

Fourier representations given by the dispersion relations (3.3).

∂t




µ
ζ
µ1

ζ1


 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0







δµH
δζH
δµ1

H
δζ1H


 . (3.8)

4. Cubic terms in the Hamiltonian

We now turn to the cubic terms H(3) in H . The potential energy V in (2.10) is quadratic and
does not contribute any higher-order terms. Thus, H(3) reduces to the cubic part K(3) of the kinetic
energy K, which identifies with the first line of (2.14). We calculate K(3) in the original variables
(η, ξ, η1, ξ1).

4.1. Cubic terms of the kinetic energy in the original variables. We rewrite the kinetic energy
as K = I− II + III, where




I = 1
2

∫
R
ξG11B

−1Gξ dx

II =
∫
R
ξGB−1G12ξ1 dx

III = 1
2

∫
R
ξ1
(
ρ−1
1 G22 − ρρ−1

1 G21B
−1G12

)
ξ1 dx,

(4.1)

and expand the operators appearing in I, II, III at first order in η or η1 using (2.16), (2.20), (2.21) and

(2.22) as well as identities G
(0)
11 = G

(0)
22 , G

(0)
12 = G

(0)
21 and (G

(0)
11 )

2 − (G
(0)
12 )

2 = (G(0))2.

Proposition 4.1. The cubic order terms I(3), II(3), III(3) in I, II, III of (4.1) respectively, are given
by:

I(3) =
1

2

∫

R

[
− ρη (DB−1

0 G
(0)
11 ξ)

2 − (ρ− ρ1)η (G(0)B−1
0 G

(0)
11 ξ)

2

+ ρ1η (DB−1
0 G(0)ξ)2 − ρ1η1 (G(0)B−1

0 G
(0)
12 ξ)

2
]
dx;

(4.2)

II(3) =

∫

R

[
− ρη(DB−1

0 G
(0)
11 ξ)(DB−1

0 G
(0)
12 ξ1)− (ρ− ρ1)η(G

(0)B−1
0 G

(0)
11 ξ)(G

(0)B−1
0 G

(0)
12 ξ1)

− ρη(DB−1
0 G(0)ξ)(DB−1

0 G
(0)
12 ξ1)− η1(G

(0)
12 B

−1
0 G(0)ξ)

(
G(0)B−1

0 (ρ1G
(0)
11 + ρG(0))ξ1

) ]
dx;

(4.3)

III(3) =
1

2

∫

R

[
− (ρ− ρ1)η(G

(0)B−1
0 G

(0)
12 ξ1)

2 +
ρ

ρ1
(ρ− ρ1)η(DB−1

0 G
(0)
12 ξ1)

2

− 1

ρ1
η1

(
G(0)B−1

0 (ρ1G
(0)
11 + ρG(0))ξ1

)
− 1

ρ1
η1(Dξ1)

2
]
dx.

(4.4)

Regrouping the contributions obtained in the above proposition, we obtain:

Proposition 4.2. The cubic terms H(3) of the Hamiltonian H can be written as

H(3) =
1

2

∫

R

[
− (ρ− ρ1)η

(
G(0)B−1

0 (G
(0)
11 ξ −G

(0)
12 ξ1)

)2

− ρ1η1

(
G

(0)
12 B

−1
0 G(0)ξ − 1

ρ1
G(0)B−1

0 (ρ1G
(0)
11 + ρG(0))ξ1

)2

− ρη
(
DB−1

0 (G
(0)
11 ξ −G

(0)
12 ξ1)

)2
+ ρ1η

(
DB−1

0 G(0)ξ +
ρ

ρ1
DB−1

0 G
(0)
12 ξ1

)2

− 1

ρ1
η1(Dξ1)

2

]
dx.

(4.5)

The proofs of Propositions 4.1-4.2 are a little lengthy but straightforward. The main steps are
given in Appendix A.
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4.2. Cubic terms of the kinetic energy in normal modes coordinates. We now write the cubic
terms of the Hamiltonian in normal modes coordinates (3.5).

Proposition 4.3. The cubic part of the Hamiltonian (4.5) in the normal-mode coordinates (3.5) is
given by

H(3) = − ρ− ρ1

2
√
g(ρ− ρ1)

∫

R

(b+µ− b−µ1) (A1ζ − B1ζ1)
2
dx

+
ρ1

2
√
gρ1

∫

R

(a+µ− a−µ1) (A2ζ − B2ζ1)
2 dx

− ρ

2
√
g(ρ− ρ1)

∫

R

(b+µ− b−µ1) (A3ζ − B3ζ1)
2 dx

+
ρ1

2
√
g(ρ− ρ1)

∫

R

(b+µ− b−µ1) (A4ζ − B4ζ1)
2 dx

+
1

2ρ1
√
gρ1

∫

R

(a+µ− a−µ1) (A5ζ − B5ζ1)
2 dx,

=: R1 +R2 +R3 +R4 +R5.

(4.6)

where Rj stands for the integral expression in the row j of (4.6) and

A1(D) :=
1√

g(ρ− ρ1)
(b+Qa − a+Qb), B1(D) :=

1√
g(ρ− ρ1)

(b−Qa − a−Qb),

A2(D) :=
1√
gρ1

(a+Qc − b+Qb), B2(D) :=
1√
gρ1

(a−Qc − b−Qb)

A3(D) := sgn(D)A1(D), B3(D) := sgn(D)B1(D),

A4(D) := b+
√
g(ρ− ρ1)DB−1

0 G(0) +
ρ sgn(D)

ρ1
√
g(ρ− ρ1)

a+Qb,

B4(D) := b−
√
g(ρ− ρ1)DB−1

0 G(0) +
ρ sgn(D)

ρ1
√
g(ρ− ρ1)

a−Qb,

A5(D) = −√
gρ1Da+, B5(D) = −√

gρ1Da− .

(4.7)

The proof consists of rewriting each term of (4.5) in terms of new variables (3.5), using the inverse
relations




η = 1√

g(ρ−ρ1)
(b+µ− b−µ1)

η1 = − 1√
gρ1

(a+µ− a−µ1)
and

{
ξ =

√
g(ρ− ρ1) (b

+ζ − b−ζ1)

ξ1 = −√
gρ1 (a

+ζ − a−ζ1)
(4.8)

and grouping the terms.

5. Benjamin-Ono scaling and modulational Ansatz

We now introduce the scaling regime under consideration. We assume the typical wavelength λ
of the internal wave is large when it is compared to the typical depth of the upper layer h1, and its
amplitude a of a typical wave is small when compared to h1, with the relation

ε =
h1

λ
=

a

h1
≪ 1.

The following scalings are thus introduced

X = εx, µ(X) = εµ̃(X), ζ(x) = ζ̃(X). (5.1)
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On the other hand, the surface modes are in the form of near-monochromatic waves with carrier
wavenumber k0 > 0 and amplitude a1 satisfying ε1 = k0a1 ≪ 1. We thus define

µ1(x, t) =
ε1√
2
ω
1/2
1 (Dx)(q(X, t)eik0x + q(X, t)e−ik0x)

ζ1(x, t) =
ε1√
2i
ω
−1/2
1 (Dx)(q(X, t)eik0x − q(X, t)e−ik0x),

(5.2)

where the weights ω
1/2
1 (D) have been introduced to diagonalize the corresponding quadratic part of

the Hamiltonian.
In addition, we assume the relation ε1 = ε1+δ with δ ∈

(
0, 1

2

)
between the small parameters ε1

and ε to emphasize that the internal wave amplitude is larger than that of the surface wave. The
restriction δ < 1

2 relates to the ordering of different small terms in the expansion, see Remark 6.2.
To incorporate the Benjamin-Ono scaling and the modulational Ansatz into the Hamiltonian, we

need two key elements of asymptotic analysis. Lemma 5.1 addresses the multi-scale character of the
problem of fast oscillations versus long-wave scaling, by describing the action of a Fourier multiplier
on a multiple-scale function [17]. On the other hand, Lemma 5.2 is a scale-separation lemma (in a
simplified form of Lemma 3.2 of [13]) that expresses that fast oscillations essentially homogenize and
do not contribute to the Hamiltonian. In our case, g(x) = eiαx is continuous and periodic with respect
to the translation lattice 2π

α Z.

Lemma 5.1. Let m(Dx) be a Fourier multiplier, then for sufficiently smooth f and sufficiently small
ε we have the following asymptotic expansion

m(Dx)
(
eik0xf(X)

)
= eik0xm(k0 + εDX)f(X)

= eik0x

(
m(k0) + ε∂km(k0)DXf(X) +

ε2

2
∂2
km(k0)D

2
Xf(X) + ...

)
,

(5.3)

where Dx = εDX. Letting k0 = 0, the expansion becomes

m(Dx)f(X) = m(εDX)f(X)

=

(
m(0) + ε∂km(0)DXf(X) +

ε2

2
∂2
km(0)D2

Xf(X) + ...

)
.

(5.4)

Lemma 5.2. Let f be a real-valued function of Schwartz class, α ∈ R be a nonzero constant and ε
be sufficiently small. Then, for all natural N ,

∫

R

eiαxf(X)dx = O(εN ). (5.5)

5.1. The quadratic Hamiltonian under the scaling regime. Inserting the above scalings into
the quadratic Hamiltonian (3.7), we get

H(2) =
1

2

∫

R

(
ε−1ζ̃ ω2(εDX)ζ̃ + εµ̃2 + ε−1ε21q ω1(k0 + εDX)q

)
dX, (5.6)

where Dx = εDX . The expansion for ω1(k0+εDX) follows (5.3) since ω1 in (3.3) is smooth around k0.
In contrast, ω2 is not sufficiently smooth near k = 0, so its expansion is obtained from the expansion
of (3.4) in the deep water limit h → ∞:

ω2(εDX) = ε2Ω0D
2
X + ε3Ω1D

2
X |DX |+ ε4Ω2D

4
X +O(ε5), (5.7)

with

Ω0 =
gh1(ρ− ρ1)

ρ
, Ω1 = −g(ρ− ρ1)ρ1h

2
1

ρ2
, Ω2 =

g(ρ− ρ1)h
3
1

ρ

(
ρ21
ρ2

− 1

3

)
. (5.8)
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The quadratic Hamiltonian in (5.6) becomes

H(2) =

∫

R

[
− ε

Ω0

2
(DX ζ̃)2 + ε2

Ω1

2
ζ̃(D2

X |DX |ζ̃)

+ ε3
Ω2

2
ζ̃(D4

X ζ̃) + εµ̃2 +
ε21
ε
ω1(k0)|q|2

+ ε21ω
′
1(k0)q(DXq) + εε21

ω′′
1 (k0)

2
q(D2

Xq)

]
dX +O(ε4).

(5.9)

The transformations (5.1)-(5.2) retain the standard symplectic form of (3.8), and the corresponding
equation of motion in new variables can be written as

∂t




µ̃

ζ̃
q
q


 =




0 1 0 0
−1 0 0 0
0 0 0 −iεε−2

1

0 0 iεε−2
1 0







δµ̃H
δζ̃H

δqH
δqH


 . (5.10)

5.2. The cubic Hamiltonian under the scaling regime. For the cubic Hamiltonian (4.6) we
show that, after the transformations (5.1)–(5.2), some of its terms become of higher order and do not
contribute at the order of our approximation.

Expanding the brackets inside the integral of R1 in (4.6), the terms involving (b+µ)(A1ζ)(B1ζ1),
(b−µ1)(A1ζ)

2 and (b−µ1)(B1ζ1)
2 can be estimated by the scale separation lemma as follows

∫

R

(b−µ1)(A1ζ)
2dx =

∫

R

(
ε1√
2
(b−ω1/2

1 )(Dx)
(
q(X)eik0x + c.c.

))
(A1(Dx)ζ)

2 dx

=
ε1√
2

∫

R

eik0x
(
(b−ω

1/2
1 )(k0 + εDX)q(X)

)
(A1(εDX)ζ̃)2 dx+ c.c.

(5.11)

Inside the integral we have a product of a fast oscillating function eik0x with a slowly modulated
smooth function of X . Applying the scale separation Lemma 5.2 to this integral, the integral is of
order O(ε1ε

N ) for sufficiently large N . The other two terms in R1 as well as similar terms in R2, ..., R5

are treated in the same fashion, the details of which are in [34]. The remaining terms in the cubic
Hamiltonian are

H(3) = − ρ− ρ1

2
√
g(ρ− ρ1)

∫

R

[
(b+µ)(A1ζ)

2 + (b+µ)(B1ζ1)
2 + 2(b−µ1)(A1ζ)(B1ζ1)

]
dx

+
ρ1

2
√
gρ1

∫

R

[
(a+µ)(A2ζ)

2 + (a+µ)(B2ζ1)
2 + 2(a−µ1)(A2ζ)(B2ζ1)

]
dx

− ρ

2
√
g(ρ− ρ1)

∫

R

[
(b+µ)(A3ζ)

2 + (b+µ)(B3ζ1)
2 + 2(b−µ1)(A3ζ)(B3ζ1)

]
dx

+
ρ1

2
√
g(ρ− ρ1)

∫

R

[
(b+µ)(A4ζ)

2 + (b+µ)(B4ζ1)
2 + 2(b−µ1)(A4ζ)(B4ζ1)

]
dx

+
1

2ρ1
√
gρ1

∫

R

[
(a+µ)(A5ζ)

2 + (a+µ)(B5ζ1)
2 + 2(a−µ1)(A5ζ)(B5ζ1)

]
dx +O(ε1ε

N ).

(5.12)

Proposition 5.3. The cubic part of the Hamiltonian H(3) can be written as

H(3) =

∫

R

[
ε2κµ̃(DX ζ̃)2 + ε21(κ1µ̃+ κ2∂X ζ̃)|q|2 + ε3κ3µ̃(|DX |DX ζ̃)(DX ζ̃)

+ εε21(κ4µ̃+ κ5∂X ζ̃)
(
qDXq + qDXq

)

+ εε21
(
κ6|DX |µ̃+ κ7|DX |∂X ζ̃

)
|q|2 + ε3κ8(|DX |µ̃)(DX ζ̃)2

]
dX +O(ε4),

(5.13)

where the coefficients κ and κj only depend on physical parameters g, h1, ρ and ρ1. Their expressions
are given in Appendix B.
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Proof. Substitution of (5.1)–(5.2) into H(3) leads to terms of different kind. For example, we sketch
the calculations for the terms appearing in line 4 of (4.6).

For the first term
∫
(b+µ)(A4ζ)dx, we write

b+(Dx)µ(x) = εb+(εDX)µ̃(X).

with

b+(εDX) =

√
ρ1
ρ

+ ε
ρ− ρ1

ρ

√
ρ1
ρ
h1|DX |+O(ε2)

=: (b+)(0) + ε(b+)(1)|DX |+O(ε2).

(5.14)

Similar steps show that, since every term of A4 contains the element Dx, its expansion is

A4(εDX) = ε

√
g(ρ− ρ1)

ρ1ρ

(
1− ε

ρ1
ρ
h1|DX |

)
DX +O(ε3)

:= εA(0)
4 DX + ε2A(1)

4 |DX |DX +O(ε3)

(5.15)

with A(0)
4 and A(1)

4 representing constants. As a result,

(
b+µ

)
(A4ζ)

2
= ε3(b+)(0)

(
A(0)

4

)2
µ̃
(
DX ζ̃

)2
+ ε4(b+)(1)

(
A(0)

4

)2
(|DX |µ̃)

(
DX ζ̃

)2

+ 2ε4(b+)(0)A(0)
4 A(1)

4 µ̃
(
DX ζ̃

)(
|DX |DX ζ̃

)
+O(ε5).

(5.16)

The coefficients of the first, second and third terms of (5.16) contribute to κ, κ8 and κ3, respectively.

For the second term
∫
(b+µ)(B4ζ1)

2dx (B4ζ1)
2
we apply (5.3) to get

(B4ζ1)
2
= −

(
B2
4ω

−1
1

)
(k0)|q|2 −

ε

2

(
B2
4ω

−1
1

)′
(k0)

(
qDXq + qDXq

)
+ ...,

where B4(k) is the Fourier symbol of B4(Dx), and we omit the terms with fast exponential functions
eik0x since they disappear under the integral due to the scale-separation Lemma 5.2. Then, we have

(b+µ)(B4ζ1)
2 =− εε21(b

+)(0)(B2
4ω

−1
1 )(k0) µ̃|q|2 − ε2ε21(b

+)(1)(B2
4ω

−1
1 )(k0) (|DX |µ̃) |q|2

− εε21
2

(b+)(0)(B2
4ω

−1
1 )′(k0)µ̃

(
qDXq + qDXq

)
+O(ε3ε21),

where the coefficients of the first, second and third terms contribute into κ1, κ6 and κ4, respectively.
We similarly write the expansion for (b−µ1)(A4ζ)(B4ζ1), which contributes into κ2, κ5 and κ7. �

6. Derivation of the coupled Benjamin-Ono – Schrödinger system.

In this section we derive a Benjamin-Ono – Schrödinger system for the Hamiltonian system (5.10)
following the approach used in [14].

6.1. Resonance condition. The expansions (5.9) and (5.13) provide the expressions for the leading

terms of the Hamiltonian H in variables (µ̃, ζ̃). The Hamiltonian can be further simplified using a
moving frame of reference or, equivalently, combining it with the conserved momentum (2.11). In the
(ζ, η) variables, the momentum becomes

I = −
∫

R

(ζ∂xµ+ ζ1∂xµ1) dx,

which after expansion under the Benjamin-Ono scaling and modulational Ansatz implies

I = −
∫

R

iεζ̃(DX µ̃)− ε21
ε
k0|q|2 −

ε21
2

[
(DXq)q + q(DXq)

]
dX +O(ε21ε

N ). (6.1)
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Combining the Hamiltonian with the momentum (6.1), we have

H − cI = H(2) − cI +H(3) +H(4) + ...

=

∫

R

[
ε
Ω0

2

(
µ̃2

Ω0

(
1− c2

Ω0

)
−
(
DX ζ̃ +

icµ̃

Ω0

)2
)

+
ε21
ε
(ω1(k0)− ck0)|q|2 + ε2

Ω1

2
ζ̃(D2

X |DX |ζ̃) + ε3
Ω2

2
ζ̃(D4

X ζ̃)

+
ε21
2
(ω′

1(k0)− c)
(
qDXq + qDXq

)
+

εε21
2

ω′′
1 (k0)q(D

2
Xq)

]
dX +H(3) +O

(
ε4 +

ε41
ε

)
.

(6.2)

We choose

c = c0 :=
√
Ω0 =

√
g

(
1− ρ1

ρ

)
h1, (6.3)

that eliminates µ̃2 term in Ĥ . We then select the wavenumber k0 of the carrier wave

k0 =
ρ

4h1 (ρ− ρ1)
(6.4)

such that the phase velocity of the internal wave is equal to the group velocity of the surface wave.

ω′
1(k0) = c0, (6.5)

This is referred to as a resonance condition between two waves. The flow of the Hamiltonian H − c0I
at our order of approximation conserves the generalized wave action

M :=

∫

R

|q|2 dX.

Subtracting the multiple of M from (6.6), we further reduce the Hamiltonian to

Ĥ = H − cI − ε21
ε
(ω1(k0)− ck0)M

=

∫

R

[
− ε

Ω0

2

(
DX ζ̃ +

icµ̃

Ω0

)2

+ ε2
Ω1

2
ζ̃(D2

X |DX |ζ̃) + ε3
Ω2

2
ζ̃(D4

X ζ̃)

+
εε21
2

ω′′
1 (k0)q(D

2
Xq)

]
dX +H(3) +O

(
ε4 +

ε41
ε

)
.

(6.6)

It is usual for Boussinesq systems to introduce ν := ∂X ζ̃, which is related to the horizontal velocity.
Under (6.3)-(6.4) and (5.13), the Hamiltonian (6.2) becomes

Ĥ =

∫

R

[
ε

2
(µ̃− c0ν)

2
+ ε2

Ω1

2
ν|DX |ν − ε3

Ω2

2
ν(∂2

Xν)

+
εε21
2

ω′′
1 (k0)q(D

2
Xq)− ε2κµ̃ν2 + ε21 (κ1µ̃+ κ2ν) |q|2

− ε3κ3µ̃(|DX |ν)(ν) + εε21 (κ4µ̃+ κ5ν)
(
qDXq + qDXq

)

+ εε21 (κ6(|DX |µ̃) + κ7(|DX |ν)) |q|2 − ε3κ8(|DX |µ̃)ν2
]
dX +O

(
ε4 +

ε41
ε

)

(6.7)

and the equation of motion is

∂t




µ̃
ν
q
q


 =




0 −∂X 0 0
−∂X 0 0 0
0 0 0 −iεε−2

1

0 0 iεε−2
1 0







δµ̃Ĥ

δνĤ

δqĤ

δqĤ


 . (6.8)
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6.2. Benjamin-Ono – Schrödinger system. We adopt the characteristic variables to analyze the
dynamics of the system in the preferred direction of propagation. Denoting the principally right-
moving component of the solution by r(X, t) and principally left-moving component by s(X, t), we
set (

r
s

)
=

(
1√
2c0

√
c0
2

1√
2c0

−
√

c0
2

)(
µ̃
ν

)
. (6.9)

We focus on the propagation to the right by restricting our attention to r(X, t) and assuming that
s(X, t) is of order O(ε2). Then, Hamiltonian (6.7) is

Ĥ =

∫

R

[
ε2

Ω1

4c0
r|DX |r − ε3

Ω2

4c0
r∂2

Xr − εε21
2

ω′′
1 (k0) q ∂2

Xq

− ε2κ̃r3 + ε21κ̃1r|q|2 − ε3κ̃2r
2|DX |r

+ εε21κ̃3r
(
qDXq + qDXq

)
+ εε21κ̃4(|DX |r)|q|2

]
dX +O

(
ε4 +

ε41
ε

)
,

(6.10)

where the new coefficients κ̃j are defined as

κ̃ =
κ

2
√
2c0

, κ̃1 = κ1

√
c0
2

+ κ2
1√
2c0

, κ̃2 =
1

2
√
2c0

(κ3 + κ8),

κ̃3 = κ4

√
c0
2

+ κ5
1√
2c0

, κ̃4 = κ6

√
c0
2

+ κ7
1√
2c0

.

(6.11)

The corresponding evolution equations are

∂t




r
s
q
q


 =




−∂X 0 0 0
0 ∂X 0 0
0 0 0 −iεε−2

1

0 0 iεε−2
1 0







δrĤ

δsĤ

δqĤ

δqĤ


 . (6.12)

Then, the equation of motion for r(X, t) satisfies the Benjamin-Ono (BO) equation expressed in a

moving reference frame, ∂tr = −∂XδrĤ. Over the time scale τ = εt, the equation becomes

∂τ r = −ε
Ω1

2c0
∂X(|DX |r) + 6εκ̃r(∂Xr) + ε2

Ω2

2c0
∂3
Xr

− ε1+2δκ̃1∂X(|q|2) + ε2κ̃2 (∂X(r|DX |r) + |DX |(r∂Xr))

− ε2+2δκ̃3∂X
(
qDXq + qDXq

)
− ε2+2δκ̃4∂X |DX |

(
|q|2
)
,

(6.13)

where we used that ε1 = ε1+δ as in (5.2).
Similarly, we write the equation of motion for the variable q(X, t) over the time scale τ ,

i∂τq = −ε
ω′′
1 (k0)

2
∂2
Xq + κ̃1rq − iεκ̃3(∂X(rq) + r∂Xq) + εκ̃4q|DX |r, (6.14)

which is of a Schrödinger type.

Remark 6.1. It may be more natural to choose the time scale τ1 = ε2t for the Benjamin-Ono
equation (6.13), so that the contribution of leading terms on the right-hand side of the equation is
of order O(1). However, we intentionally choose the same time scale τ = εt in (6.13)-(6.14) since
both equations contain coupling terms and the current form of the system is more suitable for further
analysis of its local well-posedness in the next section.

Remark 6.2. We comment on the restriction δ ∈
(
0, 1

2

)
used in the definition of ε1 in (5.2). The

main reason for this choice is to ensure that terms of order εε21 will not be absorbed into the remainder

part O
(
ε4 +

ε41
ε

)
in the Hamiltonian (6.10). Indeed, if δ = 0 (which is ε1 = ε), then εε21 =

ε41
ε . On

the other hand, if δ ≥ 1/2 then εε21 = O(ε4).
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Remark 6.3. One can further consider the system (6.13)-(6.14) under the regime ρ ≈ ρ1. The
interest is motivated by the fact that ρ1/ρ ≈ 0.99 is a typical value of the density ratio in realistic
conditions. For example, according to the measurements in [44] for the Andaman Sea, ρ1/ρ = 0.997
and in [3] off the Oregon coast, ρ1/ρ = 0.998. We do not pursue such investigation here; however, we
note that the coefficients κ̃ and κ̃j defined in (6.11) get significantly simpler. We provide estimates
on the κ̃ and κ̃j in this regime in Lemma B.1.

7. Local well-posedness of the reduced system

7.1. Setting of Problem. We first review some local and global well-posedness results on the BO
equation and related systems. We start with the Cauchy problem for the classical BO equation

vt +H(vxx) = vvx ; v(x, 0) = v0(x), (7.1)

where H is the Hilbert transform defined in (2.18). The equation is integrable by inverse scattering
[1] and has an infinite number of conserved quantities, the first three being, the L2-norm

∫

R

v(x, t)2 dx =

∫

R

v(x, 0)2 dx, (7.2)

the Hamiltonian ∫

R

(
vH(vx)−

1

3
v3
)

dx, (7.3)

and the next one in the hierarchy
∫

R

(
v2x − 3

4
v2H(vx)−

1

8
v4
)

dx. (7.4)

A broad survey of PDE and inverse scattering methods for the Cauchy problem of the Benjamin-Ono
equation and Intermediate Long Wave equations can be found in Chapter 3 of Klein-Saut [36].

The question of well-posedness of the Cauchy problem has been studied extensively for progressively
rougher classes of initial data in Hs(R). Local wellposedness of solutions in Hs, s > 3

2 was obtained by

Iorio [28], extended to global solutions in s ≥ 3
2 by Ponce [50]. Using dispersive estimates, Koch and

Tzvetkov [37] extended the local well-posedness to s > 5
4 and Kenig [32] further improved it to s > 9

8 .
By performing a gauge transformation to eliminate high-order derivatives in the non-linear term and
applying Strichartz estimates, Tao [51] further shows global wellposedness in Hs, s ≥ 1, where the
global result is due to the invariant at the level of H1. Later, Burq and Planchon established well-
posedness locally for s > 1

4 and globally for s > 1
2 [9]. Lastly, global well-posedness was established

for s ≥ 0 by Ionescu and Kenig [27] and Molinet and Pilod [41].

Analysis of the higher order BO equation brings serious difficulties. Linares, Pilod and Ponce [40]
proved local well-posedness for H2 initial data of the Cauchy problem for the following higher-order
BO equation

∂tv − bH(vxx) + avxxx = cvvx − d (vH(vx) +H(vvx))x ; v(0, x) = v0(x). (7.5)

For lack of conserved quantities at the level of H2, a global result was not established. However, a
little later, Molinet and Pilod [42] proved global well-posedness for H1 initial data. The main effort
was to prove existence locally in H1 and then they used the conserved quantity at the level of H1 to
obtain global well-posedness.

Turning to coupled systems, the BO-Schrödinger system
{

i∂tu+ ∂2
xu = αuv

∂tv + ν∂x(|Dx|v) = β∂x(|u|2)
(7.6)
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was derived by Funakoshi and Oikawa [21] in a regime where the internal wave has a smaller amplitude
than the surface one. In particular, the BO equation does not have nonlinear terms.

This system has the following three conservation laws:

M =

∫

R

|u(x, t)|2dx (7.7a)

L = − α

2β

∫

R

|v(x, t)|2dx− Im

∫

R

uuxdx (7.7b)

H =

∫

R

((
|ux|2 −

αν

2β
||Dx|1/2v|2 + αv|u|2

)
dx. (7.7c)

In the context of several classes of systems (KdV-NLS, BO-NLS), Bekiranov, Ogawa and Ponce [7]
proved local existence in Hs×Hs−1/2, ν 6= 1, s ≥ 0. Because of conservation laws, the solutions persist
globally in time when s ≥ 1, αν/β < 0. Pecher [46] extended the global result to |ν| = 1, α/β < 0,
and s > 1/3. Angulo, Matheus and Pilod [2] further improved global well-posedness to s = 0,
ν 6= 0, |ν| 6= 1. Finally, we mention a recent article of Linares, Mendez and Pilod [39] who included
nonlinear terms in the Schrödinger and BO equations and proved local existence of solutions in
Hs+1/2 ×Hs, s > 5/4.

Our system (6.13)-(6.14) derived in the previous section combines two difficult issues, high order
terms in both equations and coupling. For this reason, we will restrict ourselves to a simplified version
of it, where we neglect the last two terms of each equation, namely we will consider the system





∂tr + a∂3
xr − bH∂2

xr = cr∂xr − d∂x (rH∂xr +H(r∂xr)) + β∂x
(
|q|2
)
,

i∂tq − α∂2
xq = −βqr,

r(x, 0) = r0(x), q(x, 0) = q0(x),

(7.8)

where x, t ∈ R, v is a real-valued function, a is a nonzero real number, b, c, d, β, α, β are positive real
numbers. Solutions of (7.8) conserve the Hamiltonian (energy)

E1 :=

∫

R

(
− b

2
r|Dx|r −

a

2
|∂xr|2 − α|∂xq|2 −

c

6
r3 − βr|q|2 + d

2
r2|Dx|r

)
dx

and the L2-norm of the solution q,

E2 :=

∫

R

|q|2dx.

The L2-norm of r, however, is not preserved. Instead, we have the conservation of the quantity

E3 :=
1

2

∫

R

r2dx+ Im

∫

R

q∂xqdx.

Our main well-posedness result for the system (7.8) is the following:

Theorem 7.1. Let

X :=
(
H2(R) ∩ L2(R;x2dx)

)
×
(
H3(R) ∩ L2(R;x2dx)

)
. (7.9)

For every (r0, q0) ∈ X, there exists a positive time T = T (‖(r0, q0)‖X) for which the initial value
problem (7.8) admits a unique solution (r, q) ∈ X satisfying

(r, q) ∈ C ([0, T ] : X) ,

∂l
xr ∈ L6 ([0, T ] : L∞

x (R)) for l = 0, 1, 2,

∂3
xr ∈ L2

(
[0, T ] : L2

loc(R)
)
,

∂x(xr) ∈ L2
(
[0, T ] : L2

loc(R)
)
.

(7.10)

We point out that Theorem 7.1 implies the boundedness of the weighted L2
x-norms of r and q,

which are necessary to control the gauge transformation (7.25). The additional properties of r in
(7.10) appear as a result of boundedness of the semi-norms (8.3) used in the proof.
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7.2. Strategy of the proof. The proof is based on a standard contraction mapping principle for
appropriately chosen norms, which we will discuss in more details below. The main difficulty in the
analysis of (7.8) is the presence of second-order derivatives of r in the nonlinear part of the Benjamin-
Ono equation. Such terms cannot be treated using smoothing estimates as in Lemma 7.3 since the
second inequality in (7.16) can handle only up to one derivative. To overcome this difficulty, we
introduce pseudo-differential operators P+ and P−, which correspond to projections into positive and
negative frequencies, respectively:

P̂±f(k) = 1R±
f̂(k).

Then, the relations

H = −i(P+ − P−) and 1 = P+ + P−. (7.11)

allow to apply P± to the BO equation, see (7.22) and (7.23). The high-derivative nonlinear terms
of these equations consist of terms r∂3

xP±r and terms involving the commutator [P±, r]. The most
problematic out of these two is r∂3

xP±r, since the other term can be treated using a commutator
estimate from Lemma 7.4 proved in Dawson, McGahagan and Ponce [18]. To remove the problematic
term, we use the idea of a gauge transformation, initially introduced by Hayashi and Ozawa in [25] in
the context of the NLS equation and applied by Tao in [51] and Linares, Pilod and Ponce in [40] for
BO equation. Our gauge transformation function Ψ, defined in (7.25), is constructed as in [40]. As a
result of these algebraic steps, we rewrite the BO equation as a system of three nonlinear PDEs for r
and w± := Ψ±∂xP±r, see (7.31).

The proof of Theorem 7.1 now follows from solving the system (7.31) coupled with the Schrödinger
equation in (7.8) and using a fixed point argument. Namely, we intend to solve the system





(
∂t + a∂3

x − bH∂2
x

)
r = N (r, w±) + β∂x

(
|q|2
)
,

(∂t + a∂3
x + ib∂2

x)w+ = M+(r, w±) + 2idΨ+[P+, r]∂
2
x(Ψ−w+) + βΨ+∂

2
xP+

(
|q|2
)
,

(∂t + a∂3
x − ib∂2

x)w− = M−(r, w±)− 2idΨ−[P−, r]∂
2
x(Ψ+w−) + βΨ−∂

2
xP−

(
|q|2
)
,

i∂tq − α∂2
xq = −βqr,

r(x, 0) = r0(x), q(x, 0) = q0(x), w±(x, 0) = w±,0 := Ψ±∂xP±r0.

(7.12)

Proposition 7.2. Let

Y :=
(
H1(R) ∩ L2(R;x2dx)

)
×H1(R)2 ×

(
H3(R) ∩ L2(R;x2dx)

)
.

For every (r0, w±,0, q0) ∈ Y , there exists T = T (‖(r0, w±,0, q0)‖Y ) for which the initial value problem
(7.12) admits a unique solution (r, w±, q) ∈ Y satisfying

(r, w±, q) ∈ C ([0, T ] : Y ) ,

∂l
xr, ∂

l
xw± ∈ L6 ([0, T ] : L∞

x (R)) for l = 0, 1,

∂2
xr, ∂

2
xw± ∈ L2

(
[0, T ] : L2

loc(R)
)
,

∂x(xr) ∈ L2
(
[0, T ] : L2

loc(R)
)
.

From the definition (7.26), it is clear that Proposition 7.2 implies Theorem 7.1. Indeed, one can
relate the functions r and w± via

∂xr = Ψ−w+ +Ψ+w−.

In Section 8, we provide the proof of Proposition 7.2, which follows from the fixed point argument
applied to the integral form of the equations (7.12). The integral forms are given in (8.1)–(8.2).
The semi-norms we use are similar to those in [40]; they are given in (8.3)–(8.4) with an additional
semi-norm needed to get the H3

x-norm estimates for the solution q of the Schrödinger equation. We
point out that the norms λT

3 and λT
4 involving the cut-off function (7.13) are needed to control the

terms involving ∂2
xv and ∂2

xw±. The example of such treatment is given in (8.11), where we face ∂2
xv

appearing from ‖N‖H1
x
in (8.6). In view of (7.28), it may be also possible to control ∂2

xv by means of

λT
1 (w±) or λT

2 (w±) as in (8.15); however, similar ideas seem to fail for ∂2
xw±.
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7.3. Preliminary lemmas. Throughout the rest of the paper, we denote 〈t〉 :=
√
1 + t2. We write

a . b if there is a uniform constant C such that a ≤ Cb. If a . b and b . a, we write a ≈ b.
We introduce a cut-off function χ(x) ∈ C∞

c (R) such that 0 ≤ χ ≤ 1, χ ≡ 1 on [0, 1], suppχ ⊂ (−1, 3)
and set

χj/N (x) := χ

(
x− j

N

)
(7.13)

for N ∈ Z+. Note that, by construction,

+∞∑

j=−∞
χj/N (x) ≈ N for all x ∈ R. (7.14)

The analysis of the equations in (7.8) involves linear operators (a∂3
x−bH∂2

x), (a∂
3
x± ib∂2

x) and iα∂2
x,

so we define the corresponding unitary groups in Hs(R) as follows:

V (t) := e−t(a∂3
x−bH∂2

x), W±(t) := e−t(a∂3
x±ib∂2

x) and U(t) := e−itα∂2
x . (7.15)

Lemma 7.3. (Strichartz estimates) Let S be one of the following semi-groups: V or W±. Then, for
every T > 0 and every function h of sufficient regularity in x, we have

‖S(t)h‖L6
tL

∞
x

. ‖h‖L2
x
,

(
sup
j∈Z

∫ T

0

∫

R

∣∣χj/N (x)∂xS(t)h(x)
∣∣2 dxdt

)1/2

. 〈T 〉1/2‖h‖L2
x
,


∑

j∈Z

sup
0≤t≤T

sup
x∈R

∣∣χj/N (x)S(t)h(x)
∣∣2



1/2

. 〈T 〉2‖h‖H1
x
,

(7.16)

where χj/N is given by (7.13) and N = N(T ) ≈ 1 + T .
Moreover, for the semi-group U(t) we have


∑

j∈Z

sup
0≤t≤T

sup
x∈R

∣∣χj/N (x)U(t)h(x)
∣∣2



1/2

. 〈T 〉2‖h‖H1
x
. (7.17)

Proof. For the proof of (7.16), we refer to Lemma 2.1 in [40] and references therein. For the proof of
(7.17), we refer to Theorem 3.1 in [33] and references therein. �

The commutators involving the two projection operators

[P±, h] := P±h− hP± (7.18)

satisfy the following estimate proven in [18].

Lemma 7.4. (Commutator lemma) Let h be a function of sufficient regularity, then for any p > 1
and nonnegative integers l,m with l +m ≥ 1, there exists a constant c = c(p, l,m) such that

∥∥∂l
x[P±, h]∂

m
x f
∥∥
Lp

x
≤ c‖∂(l+m)

x h‖L∞
x
‖f‖Lp

x
. (7.19)

We will also need the following result, which shows the commutativity property of a space variable x
with a linear operator associated with V defined in (7.15).

Lemma 7.5. (Commutativity relation) For all h ∈ S(R), we have

(a∂3
x − bH∂2

x)(xh) = (3a∂2
x − 2bH∂x)h+ x(a∂3

x − bH∂2
x)h. (7.20)
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Proof. The computations for ∂3
x part are straightforward. For H∂2

x, we derive the estimates using the
Fourier space. Indeed, using the integration by parts, we can write

H∂2
x(xh) =

∫
ik2sgn(k) x̂h(k)eikxdk

=

∫
∂k
(
|k|keikx

)
ĥ(k)dk

=

∫
(2ksgn(k) + ix|k|k) eikxĥ dk = 2∂xHh+ x∂2

xHh.

�

7.4. Reformulation of the Benjamin-Ono equation. The goal of this section is to rewrite the
Benjamin-Ono equation as a system of three partial differential equations for dependent variables r
and w±, where w± are defined in terms of ∂xr. Ultimately, the non-linear terms in the system for
(v, w±) only involve first-order derivatives as shown in (7.27b), (7.28) and (7.29).

Applying the derivative ∂x to the first equation in (7.8), we get
(
∂t + a∂3

x − bH∂2
x

)
∂xr = c

(
(∂xr)

2 + r∂2
xr
)
− d

(
(∂2

xr)(H∂xr) + 2(∂xr)(H∂2
xr)
)

− 3dH
(
(∂2

xr)(∂xr)
)
− d

(
r(H∂3

xr) +H(r∂3
xr)
)
+ β∂2

x

(
|q|2
) (7.21)

The Hilbert transform operator in the above equation can be expressed using the relation (7.11), and
projecting the whole equation onto P+, we get

(
∂t + a∂3

x + ib ∂2
x

)
∂xP+r = P+Q+(r) + 2idr ∂3

xP+r + 2id[P+, r]∂
3
xP+r + β∂2

xP+

(
|q|2
)
, (7.22)

where [P+, r] is the commutator defined in (7.18) and

Q+(r) := c
(
(∂xr)

2 + v∂2
xv
)
− d

(
(∂2

xr)(H∂xr) + 2(∂xr)(H∂2
xr)
)
+ 3id(∂xr)(∂

2
xr).

Projecting (7.21) onto P−, we get the equation for ∂xP−v, which can be obtained from (7.22) by
taking its complex conjugate,

(
∂t + a∂3

x − ib ∂2
x

)
∂xP−r = P−Q+(r) − 2idr ∂3

xP−r − 2id[P−, r]∂
3
xP−r + β∂2

xP−
(
|q|2
)
. (7.23)

To eliminate the higher-order derivative term v∂3
xP+r in (7.22), we multiply the equation by a function

Ψ = Ψ(x, t), which will be chosen later. Then using the identities

Ψ∂t∂xP+r = ∂t(Ψ∂xP+r) − (∂tΨ)(∂xP+r),

aΨ∂3
x∂xP+r = a∂3

x(Ψ∂xP+r)− 3a(∂xΨ)(∂3
xP+r) − 3a(∂2

xΨ)(∂2
xP+r)− a(∂3

xΨ)(∂xP+r),

ibΨ∂2
x∂xP+r = ib∂2

x(Ψ∂xP+r)− 2ib(∂xΨ)(∂2
xP+r)− ib(∂2

xΨ)(∂xP+r),

we get

(∂t + a∂3
x + ib∂2

x)Ψ∂xP+r = (∂tΨ)(∂xP+r) + 3a(∂xΨ)(∂3
xP+r) + 3a(∂2

xΨ)(∂2
xP+r)

+ a(∂3
xΨ)(∂xP+r) + 2ib(∂xΨ)(∂2

xP+r) + ib(∂2
xΨ)(∂xP+r)

+ ΨP+Q+(r) + 2idΨv ∂3
xP+v + 2idΨ[P+, r]∂

3
xP+r

+ βΨ∂2
xP+

(
|q|2
)
.

(7.24)

The higher-order derivative terms involving ∂3
xP+r will vanish if we choose a function Ψ that satisfies

3a∂xΨ+ 2idΨr = 0 =⇒ Ψ(x, t) = e−
2id
3a

∫
x

−∞
r(y,t)dy. (7.25)

The term ∂tΨ in (7.24) can be found from (7.25) as

∂tΨ = −2id

3a
Ψ

∫ x

−∞
rtdy

= −2id

3a
Ψ
(
−a∂2

xr + bH∂xr +
c

2
r2 − dr(H∂xr)− dH(r∂xr)

)
,
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where we used (7.8) to define rt.
Setting Ψ+ = Ψ and Ψ− = Ψ, we define the function on left-hand side of (7.24) as

w+ := Ψ+∂xP+r. (7.26)

We also define w− := Ψ−∂xP−r = w+ whose evolution equation is given by the complex conjugate of
(7.24). Under the condition (7.25), the equation (7.24) becomes

(∂t + a∂3
x + ib∂2

x)w+ = −2id

3a
w+

(
−a∂2

xv + bH∂xr +
c

2
r2 − dr(H∂xr) − dH(r∂xr)

)

+ 3a(∂2
xΨ+)(∂

2
xP+r) + a(∂3

xΨ+)(∂xP+r) + 2ib(∂xΨ+)(∂
2
xP+r)

+ ib(∂2
xΨ+)(∂xP+r) + Ψ+P+Q+(r) + 2idΨ+[P+, r]∂

3
xP+r

+ βΨ+∂
2
xP+

(
|q|2
)

(7.27a)

=: M+(r, w±) + 2idΨ+[P+, r]∂
2
x(Ψ−w+) + βΨ+∂

2
xP+

(
|q|2
)
, (7.27b)

where we write ∂3
xP+r = ∂2

x(Ψ−w+) and M+ denotes the sum of all terms in (7.27b) except the last
two. Note that, based on the definitions of w± and Ψ in (7.25), the nonlinear function M+ can be
expressed as a polynomial involving terms in r and w± up to their first derivatives only. Indeed, the
second order derivative terms appearing in (7.27b) are treated similar to the following

∂2
xr = ∂x ((P+ + P−)∂xr) = ∂x (Ψ−Ψ+∂xP+r +Ψ+Ψ−∂xP−r) = ∂x (Ψ−w+ +Ψ+w−) , (7.28)

while for the terms involving ∂3
xΨ we use (7.25) as well. Taking the complex conjugate of (7.27b), we

get an equation for w− given by

(∂t + a∂3
x − ib∂2

x)w− = M−(r, w±)− 2idΨ−[P−, r]∂
2
x(Ψ+w−) + βΨ−∂

2
xP−

(
|q|2
)
, (7.29)

where M− = M+. The equation (7.27b) is now ready for further analysis.
We also rewrite the original Benjamin-Ono equation in (7.8) using the newly defined function w±.

We note that its higher-order derivative terms in the nonlinear part can also be simplified as in (7.28)
using identities (7.11) and (7.25). For example,

∂x(rH∂xr) = −i∂x (rΨ+Ψ−(P+ − P−)∂xr) = −i∂x (r(Ψ−w+ −Ψ+w−)) .

Repeating similar manipulations for the rest of higher-order nonlinear terms, the equation for v in
(7.8) becomes

(
∂t + a∂3

x − bH∂2
x

)
r = cv∂xr + id∂x(rΨ−w+ − vΨ+w−)− dH∂x(rΨ−w+ + rΨ+w−)

+ β∂x
(
|q|2
)

:= N (r, w±) + β∂x
(
|q|2
)
,

(7.30)

where N is a polynomial involving terms in v and w± up to their first derivatives only. As a result of
the above steps, the Benjamin-Ono equation in (7.8) is equivalent to the following system of equation





(
∂t + a∂3

x − bH∂2
x

)
r = N (r, w±) + β∂x

(
|q|2
)
,

(∂t + a∂3
x + ib∂2

x)w+ = M+(r, w±) + 2idΨ+[P+, r]∂
2
x(Ψ−w+) + βΨ+∂

2
xP+

(
|q|2
)
,

(∂t + a∂3
x − ib∂2

x)w− = M−(r, w±)− 2idΨ−[P−, r]∂
2
x(Ψ+w−) + βΨ−∂

2
xP−

(
|q|2
)

(7.31)

Finally, we write the evolution equation for xr and xu, which will be used later to get estimates of
v and u in the weighted space L2(R;x2dx). We multiply (7.30) by x, and using (7.20), we can write

(
∂t + a∂3

x − bH∂2
x

)
(xr) = (3a∂2

x − 2bH∂x)r + xN (r, w±) + βx∂x
(
|q|2
)
.

Similarly, we obtain (
∂t + iα∂2

x

)
(xq) = 2iα∂xq + iβxqr.
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8. Proof of Proposition 7.2

Equations for r, w± and q are written in Duhamel form as

r(t) = V (t)r0 +

t∫

0

V (t− s)
(
N (r, w±) + β∂x

(
|q|2
))

ds (8.1a)

w±(t) = W±(t)w±,0 +

t∫

0

W±(t− s)
(
M± ± 2idΨ±[P±, r]∂

2
x(Ψ∓w±) + βΨ±∂

2
xP±

(
|q|2
) )

ds (8.1b)

q(t) = U(t)q0 + iβ

t∫

0

U(t− s)(qr)ds, (8.1c)

where w±,0 := Ψ±∂xP±r0, while the integral equations for the weighted functions are

xr(t) = V (t)(xr0) +

t∫

0

V (t− s)
(
(3a∂2

x − 2bH∂x)r + xN (r, w±) + βx∂x
(
|q|2
) )

ds (8.2a)

xq(t) = U(t)(xq0) + i

t∫

0

U(t− s)(2α∂xq + βxqr)ds. (8.2b)

8.1. Estimates on semi-norms. We introduce the following semi-norms: for any T > 0 let

λT
1 (h) = sup

0≤t≤T
‖h(x, t)‖H1

x
;

λT
2 (h) = ‖h(x, t)‖L6

t(0,T )L∞
x
+ ‖∂xh(x, t)‖L6

t (0,T )L∞
x

;

λT
3 (h) = 〈T 〉−1/2


sup

j∈Z

T∫

0

∫

R

∣∣χj/N (x)∂2
xh(x, t)

∣∣2 dx dt




1/2

;

λT
4 (h) = 〈T 〉−2


∑

j∈Z

sup
0≤t≤T

sup
x∈R

∣∣χj/N (x)h(x, t)
∣∣2



1/2

;

λT
5 (h) = sup

0≤t≤T
‖xh(t)‖L2

x
;

λT
6 (h) = 〈T 〉−1/2


sup

j∈Z

T∫

0

∫

R

∣∣χj/N (x)∂x (xh(x, t))
∣∣2 dx dt




1/2

;

(8.3)

and
µT
1 (h) = sup

0≤t≤T
‖h(t)‖H3

x
. (8.4)

Let Y and YT be spaces defined as

Y :=
(
H1(R) ∩ L2(R;x2dx)

)
×H1(R)2 ×

(
H3(R) ∩ L2(R;x2dx)

)
,

and
YT :=

{
(r, w±, q) ∈ C

(
[0, T ];Y

)
: ‖(r, w±, q)‖YT

< ∞
}
,

where
‖(r, w±, q)‖Y := ‖r‖H1

x
+ ‖xr‖L2

x
+ ‖w+‖H1

x
+ ‖w−‖H1

x
+ ‖q‖H3

x
+ ‖xq‖L2

x
.

and

‖(r, w±, q)‖YT
:=

6∑

l=1

λT
l (r) +

4∑

l=1

λT
l (w±) + µT

1 (q) + λT
4 (q) + λT

5 (q). (8.5)
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Lemma 8.1. The following estimate holds for the semi-norms in (8.3)–(8.4):

‖(r, w±, q)‖YT
. 〈T 〉‖(r0, w±,0, q0)‖Y +

∫ T

0

(

〈T 〉‖N (s)‖H1
x
+ 〈T 〉‖M±(s)‖H1

x
+ ‖xN (s)‖L2

x

)

ds

+

∫ T

0

(

〈T 〉‖qr(s)‖H3
x
+ 〈T 〉‖q2(s)‖H2

x
+ ‖x∂x(|q|

2)‖L2
x
+ ‖xqr‖L2

x

)

ds

+

∫ T

0

〈T 〉
(

‖Ψ±[P±, r]∂
2
x(Ψ∓w±)‖H1

x
+ ‖Ψ±∂

2
xP±(|q|

2)(s)‖H1
x

)

ds

+ T‖(r,w±, q)‖
2
YT

(8.6)

Proof. We show the steps to derive the bounds for the semi-norms λT
1 (r), . . . , λ

T
5 (r). The bounds for

the rest of the semi-norms in (8.5) are obtained in a similar fashion.
Using the integral equation for v in (8.1) and Minkowski inequality we get

λT
1 (r) . ‖V (t)r0‖L∞

t (0,T )H1
x
+

∥∥∥∥
∫ t

0

V (t− s)
(
N (s) + ∂x(|q2|)

)
ds

∥∥∥∥
L∞

t (0,T )H1
x

. ‖t0‖H1
x
+

∫ T

0

‖N (s)‖H1
x
ds+

∫ T

0

‖q2(s)‖H2
x
ds.

(8.7)

Next, for l = 0, 1 using Minkowski inequality and Lemma 7.3, we have

‖∂l
xr‖L6

t (0,T )L∞
x

. ‖V (t)∂l
xr0‖L6

t(0,T )L∞
x
+

∥∥∥∥
∫ t

0

V (t− s)
(
∂l
xN (s) + ∂l+1

x (|q|2)
)
ds

∥∥∥∥
L6

t (0,T )L∞
x

. ‖∂l
xr0‖L2

x
+

∥∥∥∥∥

∫ T

0

‖V (t− s)
(
∂l
xN (s) + ∂l+1

x (|q|2)
)
‖L∞

x
ds

∥∥∥∥∥
L6

t (0,T )

. ‖r0‖H2
x
+

∫ T

0

‖V (t− s)
(
∂l
xN (s) + ∂l+1

x (|q|2)
)
‖L6

t(0,T )L∞
x
ds

. ‖r0‖H2
x
+

∫ T

0

(
‖N (s)‖H1

x
+ ‖q2‖H2

x

)
ds,

and this gives the bound for λT
2 (r).

Similarly, for λT
3 (r) we get

〈T 〉1/2λT
3 (r) .


sup

j∈Z

T∫

0

∫

R

∣∣χj(x)∂
2
xV (t)r0(x, t)

∣∣2 dx dt




1/2

+


sup

j∈Z

T∫

0

∫

R

∣∣∣∣∣∣

t∫

0

χj(x)∂
2
xV (t− s)

(
N (r, w±) + β∂x

(
|q|2
))

ds

∣∣∣∣∣∣

2

dx dt




1/2

:= I1 + I2.

The first term I1 can be easily bounded using the corresponding linear estimate in (7.16) as

I1 . 〈T 〉1/2‖r0‖H1
x
.
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For the second term we use Minkowski inequality for L2
xL

1
s to write



∫

R

∣∣∣∣∣∣

t∫

0

∣∣∣χj(x)∂
2
xV (t− s)

(
N (r, w±) + β∂x

(
|q|2
) )∣∣∣ds

∣∣∣∣∣∣

2

dx




1/2

.

t∫

0



∫

R

∣∣∣χj(x)∂
2
xV (t− s)

(
N (r, w±) + β∂x

(
|q|2
) )∣∣∣

2

dx




1/2

ds,

and then we get

I2 .


sup

j∈Z

T∫

0




T∫

0



∫

R

∣∣∣χj(x)∂
2
xV (t− s)

(
N (r, w±) + β∂x

(
|q|2
) )∣∣∣

2

dx




1/2

ds




2

dt




1/2

.


sup

j∈Z




T∫

0




T∫

0

∫

R

∣∣∣χj(x)∂
2
xV (t− s)

(
N (r, w±) + β∂x

(
|q|2
) )∣∣∣

2

dx dt




1/2

ds




2



1/2

.

T∫

0


sup

j∈Z

T∫

0

∫

R

∣∣∣χj(x)∂
2
xV (t− s)

(
N (r, w±) + β∂x

(
|q|2
) )∣∣∣

2

dx dt




1/2

ds

. 〈T 〉1/2
T∫

0

(
‖N‖H1

x
+ ‖q2‖H2

x

)
ds,

where we used Minkowski inequality again for L2
tL

1
s and the linear estimate (7.16) for the last in-

equality. The above bounds for I1 and I2 lead to the desired bound for λT
3 (r). The bound for λT

4 (r)
is derived similarly to the above estimates for λT

3 (r).
For λT

5 (r), we use the integral equation in (8.2) and the Minkowski inequality to write

λT
5 (r) . ‖xr0‖L2

x
+

∫ T

0

(
‖r‖H2

x
+ ‖xN (s)‖L2

x
+ ‖x∂x

(
|q|2
)
‖L2

x

)
ds. (8.8)

To get the appropriate bound for the sup term, we recall (7.25) and (7.28), so that

‖r‖H2
x
. ‖r‖H1

x
+ ‖w+‖H1

x
+ ‖w−‖H1

x
+ ‖r‖L∞

x

(
‖w+‖L2

x
+ ‖w−‖L2

x

)
,

which implies

sup
0≤s≤T

‖r‖H2
x
. λT

1 (r) + λT
1 (w±) + ‖(r, w±, q)‖2Y 2

T
.

Then, using the bounds for λT
1 terms as in (8.7), the above estimates give

λT
5 (r) . 〈T 〉 ‖(r0, w±,0, q0)‖Y +

∫ T

0

T
(
‖N (s)‖H1

x
+ ‖q2(s)‖H2

x
+ ‖M±‖H1

x

)
ds

+

∫ T

0

T
(
‖Ψ±[P±, r]∂

2
x(Ψ∓w±)‖H1

x
+ ‖Ψ±∂

2
xP±(|q|2)(s)‖H1

x

)
ds

+

∫ T

0

(
‖xN (s)‖H2

x
+ ‖x∂x

(
|q|2
)
‖H3

x

)
ds+ T ‖(r, w±, q)‖2Y 2

T
.

�
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8.2. Estimates on time integrals of the nonlinear terms. Here we provide the bounds on the
time intervals appearing on the right-hand side of (8.6).

Lemma 8.2. There exist positive T -independent constants θ1, θ2 > 0 and an integer N ≥ 2 such that,
for a polynomial p(y) := y2 + y3 + · · ·+ yN , we have

∫ T

0

(
〈T 〉‖N (s)‖H1

x
+ 〈T 〉‖M±(s)‖H1

x
+ ‖xN (s)‖L2

x

)
ds . T θ1〈T 〉θ2p

(
‖(r, w±, q)‖YT

)
. (8.9)

Proof. Recall from the construction that all the terms in the polynomials N and M± are written
in v and w± up to their first derivatives at most. As a result, without loss of generality, we can
consider (∂xr)Ψ−w+ and (∂xΨ+)(∂

2
xP+r) as generic terms of N and M±, respectively. Note that

∂2
xP+r = ∂x(Ψ−w+), so the generic term of M± can be written as (∂xΨ+)∂x(Ψ−w+).
Then, for the H1

x norm of the generic term of N integrated over time, we have

‖(∂xr)Ψ−w+‖L1
s(0,T )H1

x
. ‖w+Ψ−∂xr‖L1

s(0,T )L2
x
+ ‖∂x(w+Ψ−∂xr)‖L1

s(0,T )L2
x
.

The first term is bounded using the Sobolev embedding as follows:

‖w+Ψ−∂xr‖L1
s(0,T )L2

x
. ‖w+‖L∞

s (0,T )L∞
x
‖∂xr‖L∞

s (0,T )L2
x
‖Ψ−‖L1

s(0,T )L∞
x

. TλT
1 (w+)λ

T
1 (r) . T ‖(r, w±, q)‖2YT

(8.10)

The estimates for the second term are more involved, and we have

‖∂x(w+Ψ−∂xr)‖L1
s(0,T )L2

x
. ‖(∂xw+)(Ψ−∂xr)‖L1

s(0,T )L2
x
+ ‖w+(∂xΨ−)(∂xr)‖L1

s(0,T )L2
x

+ ‖w+Ψ−(∂
2
xr)‖L1

s(0,T )L2
x
.

We only show how to deal with the last term involving the third derivative, and the rest of the
terms are bounded in a similar or easier way, using (7.25) when needed. For the last term, using the
Cauchy-Schwartz inequality in s, we get

‖w+Ψ−(∂
2
xr)‖L1

s(0,T )L2
x
. T 1/2

(∫ T

0

∫

R

|w+ ∂2
xr|2dx ds

)1/2

. T 1/2〈T 〉−1


∑

j∈Z

∫ T

0

∫

R

|χj/N (x)w+ ∂2
xr|2dx ds




1/2

. T 1/2〈T 〉3/2λT
3 (r)λ

T
4 (w+) . T 1/2〈T 〉3/2‖(r, w±, q)‖2YT

,

(8.11)

where we used (7.14).
Next, we prove the bound (8.9) for the ‖M±‖H1

x
-related terms. Dealing with the generic term of

M±, we have

‖(∂xΨ+)∂x(Ψ−w+)‖L1
s(0,T )H1

x
. ‖(∂xΨ+)∂x(Ψ−w+)‖L1

s(0,T )L2
x
+ ‖∂x((∂xΨ+)∂x(Ψ−w+))‖L1

s(0,T )L2
x

. ‖vΨ+∂x(Ψ−w+)‖L1
s(0,T )L2

x
+ ‖∂x(vΨ+∂x(Ψ−w+))‖L1

s(0,T )L2
x
,

where we used the definition of Ψ+ in (7.25). Here, the first term can be treated similarly to (8.10),
while the estimates for the second term are similar to (8.10) and (8.11).

Finally, we show the estimates for the generic term of ‖xN‖L2
x
. Using the relation ∂x(xr) = r+x∂xv,

we write

‖x(∂xr)Ψ−w+‖L1
s(0,T )L2

x
. ‖∂x(xr)Ψ−w+‖L1

s(0,T )L2
x
+ ‖rΨ−w+‖L1

s(0,T )L2
x
.
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The last term is treated similarly to (8.10), while the first term is treated like (8.11) as follows:

‖∂x(xr)Ψ−w+‖L1
s(0,T )L2

x
. T 1/2

(∫ T

0

∫

R

|w+ ∂x(xr)|2dx ds

)1/2

. T 1/2〈T 〉−1


∑

j∈Z

∫ T

0

∫

R

|χj/N (x)w+ ∂x(xr)|2dx ds




1/2

. T 1/2〈T 〉3/2λT
6 (r)λ

T
4 (w+) . T 1/2〈T 〉3/2‖(r, w±, q)‖2YT

.

�

Lemma 8.3. There exist positive T -independent constants θ1, θ2 > 0 and an integer N ≥ 2 such that,
for a polynomial p(y) := y2 + y3 + · · ·+ yN , we have

∫ T

0

(
〈T 〉‖qr(s)‖H3

x
+ 〈T 〉‖q2(s)‖H2

x
+ ‖x∂x(|q|2)‖L2

x
+ ‖xqr‖L2

x

)
ds

. T θ1〈T 〉θ2p
(
‖(r, w±, q)‖YT

)
.

(8.12)

Proof. The last three terms on the left-hand side of (8.12) are easy to deal with. Indeed, we have

‖q2‖L1
s(0,T )H2

x
. T ‖q‖2L∞

s (0,T )H2
x
. TµT

1 (q)
2 . T ‖(r, w±, q)‖2YT

,

where we used the Banach algebra property of H2
x space,

‖x∂x(|q|2)‖L1
s(0,T )L2

x
. T ‖xq‖L∞

s (0,T )L2
x
‖q‖L∞

s (0,T )H2
x
. TλT

5 (q)µ
T
1 (q) . T ‖(r, w±, q)‖2YT

,

and similar steps for ‖xqr‖L2
x
.

When dealing with ‖qr‖H3
x
, the most problematic term is q∂3

xr which can be treated similarly to
(8.11). That is

‖q∂3
xr‖L1

s(0,T )L2
x
. ‖q∂2

x(Ψ−w+)‖L1
s(0,T )L2

x
+ ‖q∂2

x(Ψ+w−)‖L1
s(0,T )L2

x
,

where we decomposed ∂3
xr similar to (7.28). The bounds for these terms can be derived using the

steps as in (8.11).
�

Lemma 8.4. There exist positive T -independent constant θ1.θ2 > 0 and an integer N ≥ 2 such that,
for a polynomial p(y) := y2 + y3 + · · ·+ yN , we have

∫ T

0

〈T 〉
(
‖Ψ±[P±, r]∂

2
x(Ψ∓w±)‖H1

x
+ ‖Ψ±∂

2
xP±(|q|2)‖H1

x

)
ds . T θ1〈T 〉θ2p

(
‖(r, w±, q)‖YT

)
. (8.13)

Proof. The bound for the second term in (8.13) can be obtained using the Banach algebra property
of the H3

x space,

‖Ψ±∂
2
xP±(|q|2)‖L1

s(0,T )H1
x
. ‖Ψ±∂

2
xP±(|q|2)‖L1

s(0,T )L2
x
+ ‖∂x

(
Ψ±∂

2
xP±(|q|2)

)
‖L1

s(0,T )L2
x

. ‖∂2
x(|q|2)‖L1

s(0,T )L2
x
+ ‖r∂2

x(|q|2)‖L1
s(0,T )L2

x
+ ‖∂3

x(|q|2)‖L1
s(0,T )L2

x

. ‖|q|2‖L1
s(0,T )H3

x

(
1 + ‖r‖L∞

s (0,T )L∞
x

)

. T
(
‖(r, w±, q)‖2YT

+ ‖(r, w±, q)‖3YT

)
.

To treat the first term in (8.13) we use the commutator estimates (7.19). First, we write

‖Ψ±[P±, r]∂
2
x(Ψ∓w±)‖L1

s(0,T )H1
x
. ‖Ψ±[P±, r]∂

2
x(Ψ∓w±)‖L1

s(0,T )L2
x

+ ‖∂x
(
Ψ±[P±, r]∂

2
x(Ψ∓w±)

)
‖L1

s(0,T )L2
x
.

(8.14)



INTERACTION BETWEEN LONG INTERNAL WAVES AND FREE SURFACE WAVES IN DEEP WATER 25

Then, using Hölder inequality in s, (7.19) and (7.25),

‖Ψ±[P±, r]∂
2
x(Ψ∓w±)‖L1

s(0,T )L2
x
.

∫ T

0

‖∂xr‖L∞
x
‖∂x (Ψ∓w±) ‖L2

x
ds

. T 5/6‖∂xr‖L6
s(0,T )L∞

x

(
‖r‖L∞

s (0,T )L∞
x
‖w±‖L∞

s (0,T )L2
x
+ ‖w±‖L∞

s (0,T )H1
x

)

. T 5/6
(
‖(r, w±, q)‖2YT

+ ‖(r, w±, q)‖3YT

)
.

For the second term in (8.14), using (7.25), we have

‖∂x
(
Ψ±[P±, r]∂

2
x(Ψ∓w±)

)
‖L1

s(0,T )L2
x
. ‖Ψ±r[P±, r]∂

2
x(Ψ∓w±)‖L1

s(0,T )L2
x

+ ‖Ψ±∂x[P±, r]∂
2
x(Ψ∓w±)‖L1

s(0,T )L2
x
.

The most difficult term here is the last one, when the derivative hits the commutator part. To treat
it we again use (7.19) as follows

‖Ψ±∂x[P±, r]∂
2
x(Ψ∓w±)‖L1

s(0,T )L2
x
.

∫ T

0

‖∂2
xr‖L∞

x
‖∂x(Ψ∓w±)‖L2

x
ds

. T 5/6
(
λT
2 (w+) + λT

2 (w−)
)
λT
1 (w±)

(
1 + λT

1 (r)
)
,

(8.15)

where we used Hölder inequality in s and the relation (7.28). �

8.3. Fixed-point argument. Applying the results of Lemmas 8.2-8.4 to the estimate (8.6), there
exist positive constants C, θ1 and θ2 such that

‖(r, w±, q)‖YT
≤ C〈T 〉‖(r0, w±,0, q0)‖Y + CT θ1〈T 〉θ2p (‖(r, w±, q)‖YT

) . (8.16)

Now the proof of Proposition 7.2 follows from a fixed point argument applied to the integral equations
in (8.1).

We provide the proof for p(y) = y2 in (8.16). The proof for general case p(y) = y2 + y3 + ...yN

follows in the same manner. Starting from the estimate

‖(r, w±, q)‖YT
≤ C〈T 〉‖(r0, w±,0, q0)‖Y + CT θ1〈T 〉θ2‖(r, w±, q)‖2YT

, (8.17)

we show that, given ε := ‖(r0, w±,0, q0)‖Y , there exist δ > 0 and T > 0 such that the map defined by
the right-hand side of the integral equations (8.1) takes a ball of radius δ, in YT , which we denote by

BYT

δ , into itself. Moreover, repeating the same arguments one can verify that the map is a contraction,

hence, there is a unique fixed point in BYT

δ . The value of T is not known beforehand, so we show the
proof for both possibilities: T ≤ 1 and T ≥ 1.

Assume T ≤ 1, so that 〈T 〉 ≤ 2. Then, (8.17) becomes

‖(r, w±, q)‖YT
≤ C‖(r0, w±,0, q0)‖Y + CT θ1‖(r, w±, q)‖2YT

(8.18)

for another choice of C and the proof is standard.
If we assume T ≥ 1, then 〈T 〉 ≤ 2T . Then, (8.17) becomes

‖(r, w±, q)‖YT
≤ CT ‖(r0, w±,0, q0)‖Y + CT θ‖(r, w±, q)‖2YT

(8.19)

for another choice of C and θ = θ1 + θ2. From (8.19), we want to show the existence of positive δ and
T such that

CTε ≤ 1

2
δ and CT θδ2 ≤ 1

2
δ.

This can be done with careful computations, and we derive

T := ε−1/(1+θ)(2C)−2/(1+θ) and δ := εθ/(1+θ)(2C)(θ−1)/(1+θ). (8.20)

Note that for sufficiently small ε > 0, δ in (8.20) is sufficiently small too and the bound for T is
compatible with the corresponding assumption T ≥ 1. Moreover, this shows that as ε → 0, we have
T → ∞. On the other hand, for sufficiently large ε > 0, the bound for T is not compatible with T ≥ 1
assumption, which guarantees that T ≤ 1 in such case.
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Appendix A. Proof of Proposition 4.2

Proposition A.1. The cubic part of I is given by

I(3) =
1

2

∫

R

[
− ρη (DB−1

0 G
(0)
11 ξ)

2 − (ρ− ρ1)η (G(0)B−1
0 G

(0)
11 ξ)

2

+ ρ1η (DB−1
0 G(0)ξ)2 − ρ1η1 (G(0)B−1

0 G
(0)
12 ξ)

2
]
dx.

(A.1)

Proof. Using the expansions (2.16) and (2.22) we get

G11B
−1G = (G

(0)
11 +G

(10)
11 +G

(01)
11 )

(
B−1

0 −B−1
0 B(1)B−1

0

)
(G(0) +G(1)) + h.o.t.

= G
(0)
11 B

−1
0 G(0) + ρ1G

(0)B−1
0 (G

(10)
11 +G

(01)
11 )B−1

0 G(0) + ρG
(0)
11 B

−1
0 G(1)B−1

0 G
(0)
11 + h.o.t.

From the definitions (2.20)–(2.21), we have
{
G

(10)
11 = G

(0)
11 ηG

(0)
11 −DηD,

G
(01)
11 = −G

(0)
12 η1G

(0)
12 .

(A.2)

We substitute (A.2) and G(1) from (2.17) into the expression for G11B
−1G to rewrite it in terms of

the leading terms of the Dirichlet-Neumann operators. Then, we put the result back into I in (4.1)
to obtain (A.1). �

Proposition A.2. The cubic part of II is given by

II(3) =

∫

R

[
− ρη(DB−1

0 G
(0)
11 ξ)(DB−1

0 G
(0)
12 ξ1)− (ρ− ρ1)η(G

(0)B−1
0 G

(0)
11 ξ)(G

(0)B−1
0 G

(0)
12 ξ1)

− ρη(DB−1
0 G(0)ξ)(DB−1

0 G
(0)
12 ξ1)

− η1(G
(0)
12 B

−1
0 G(0)ξ)

(
G(0)B−1

0 (ρ1G
(0)
11 + ρG(0))ξ1

) ]
dx.

(A.3)

Proof. We expand G(η)B−1G12 in the definition II in (4.1) using (2.16) and (2.22), and obtain

G(η)B−1G12 = G(0)G
(0)
12 B

−1
0 + (DηD −G(0)ηG(0))B−1

0 G
(0)
12 +G(0)B−1

0 G
(0)
11 ηG

(0)
12

−G(0)B−1
0 G

(0)
12 η1G

(0)
11 − ρG(0)B−1

0 (G
(0)
11 ηG

(0)
11 −DηD)B−1

0 G
(0)
12

+ ρG(0)B−1
0 G

(0)
12 η1G

(0)
12 B

−1
0 G

(0)
12 − ρ1G

(0)B−1
0 DηDB−1

0 G
(0)
12

+ ρ1G
(0)B−1

0 G(0)ηG(0)B−1
0 G

(0)
12 + h.o.t.

(A.4)

Next we group the first part of the fifth term and the third term in (A.4) as

G(0)B−1
0 G

(0)
11 ηG

(0)
12 − ρG(0)B−1

0 G
(0)
11 ηG

(0)
11 B

−1
0 G

(0)
12 = ρ1G

(0)B−1
0 G

(0)
11 ηG

(0)
12 B

−1
0 G(0), (A.5)

where we used the definition of B0 in (2.22). In a like manner, we combine the second part of the

second term with the eighth (the last) term to get −ρG
(0)
11 B

−1
0 G(0)ηG(0)B−1

0 G
(0)
12 . We also add the

first part of the second term to the seventh term to get ρDB−1
0 G

(0)
11 ηDB−1

0 G
(0)
12 . These computations

result in the η-related terms in (A.4).
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The treatment of η1-related terms in (A.4) is similar, and we use the relation
(
G

(0)
11

)2
−
(
G

(0)
12

)2
=
(
G(0)

)2
. (A.6)

�

Proposition A.3. The cubic part of III is given by

III(3) =
1

2

∫

R

[
− (ρ− ρ1)η(G

(0)B−1
0 G

(0)
12 ξ1)

2 +
ρ

ρ1
(ρ− ρ1)η(DB−1

0 G
(0)
12 ξ1)

2

− 1

ρ1
η1

(
G(0)B−1

0 (ρ1G
(0)
11 + ρG(0))ξ1

)
− 1

ρ1
η1(Dξ1)

2
]
dx.

(A.7)

Proof. The proof follows from steps similar to the proofs of Proposition A.1–A.2. �

The expression (4.5) now follows from Propositions A.1-A.3.

Appendix B. Formulas for coefficients κj

We provide the explicit expressions for the κ and κj coefficients, which appear in the Hamiltonian
(5.13) and elsewhere in the paper. For the full derivation of the formulas, we refer the reader to
Section 6 of the PhD thesis of the second author [34].

The final expression for the coefficient κ is

κ =
ρ1

2
√
g(ρ− ρ1)

(b+)(0)(A(0)
4 )2 +

1

2ρ1
√
gρ1

(a+)(0)(A(0)
5 )2, (B.1)

where the constants are obtained from the expansions

a+(εDX) =

√
1− ρ1

ρ
− ε

ρ1
ρ

√
1− ρ1

ρ
h1|DX |+O(ε2)

=: (a+)(0) + ε(a+)(1)|DX |+O(ε2),

(B.2)

A(0)
4 is in (5.15) and A(0)

5 is found from

A5(εDX) = −ε

√
gρ1(ρ− ρ1)

ρ

(
1− ε

ρ1
ρ
h1|DX |

)
DX := ε

(
A(0)

5 + εA(1)
5 |DX |

)
DX . (B.3)

The expression for κ1 is given by

κ1 = −1

2

√
ρ− ρ1

g
(b+)(0)(B2

1ω
−1
1 )(k0) +

1

2

√
ρ1
g
(a+)(0)(B2

2ω
−1
1 )(k0)

+
ρ

2
√
g(ρ− ρ1)

(b+)(0)(B2
3ω

−1
1 )(k0)−

ρ1

2
√
g(ρ− ρ1)

(b+)(0)(B2
4ω

−1
1 )(k0)

− 1

2ρ1
√
gρ1

(a+)(0)(B2
5ω

−1
1 )(k0),

where Bj is defined in (4.7), ω1 is in (3.3), (a+)(0) is in (B.2) and (b+)(0) is in (5.14). For κ2 we use
(3.6), (4.7), (5.15) and (B.3) to write

κ2 = − ρ1√
g(ρ− ρ1)

A
(0)
4 (b−B4)(k0)−

1

ρ1
√
gρ1

A
(0)
5 (a−B5)(k0). (B.4)

For κ3 we have

κ3 =
ρ1√

g(ρ− ρ1)
(b+)(0)A(0)

4 A(1)
4 +

1

ρ1
√
gρ1

(a+)(0)A(0)
5 A(1)

5 . (B.5)
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For κ4 we have

κ4 = −
√
ρ− ρ1
4
√
g

(b+)(0)(B2
1ω

−1
1 )′(k0) +

√
ρ1

4
√
g
(a+)(0)(B2

2ω
−1
1 )′(k0)

+
ρ√

4g(ρ− ρ1)
(b+)(0)(B2

3ω
−1
1 )′(k0)−

ρ1

4
√
g(ρ− ρ1)

(b+)(0)(B2
4ω

−1)′(k0)

− 1

4ρ1
√
gρ1

(a+)(0)(B2
5ω

−1
1 )′(k0),

(B.6)

while

κ5 = − ρ1

2
√
g(ρ− ρ1)

A(0)
4 (b−B4)

′(k0)−
1

2ρ1
√
gρ1

A(0)
5 (a−B5)

′(k0), (B.7)

Next, we write κ6 as

κ6 =
−√

ρ− ρ1
2
√
g

(b+)(1)(B2
1ω

−1
1 )(k0) +

√
ρ1

2
√
g
(a+)(1)(B2

2ω
−1
1 )(k0)

+
ρ

2
√
g(ρ− ρ1)

(b+)(1)(B2
3ω

−1
1 )(k0)−

ρ1

2
√
g(ρ− ρ1)

(b+)(1)(B2
4ω

−1
1 )(k0)

− 1

2ρ1
√
gρ1

(a+)(1)(B2
5ω

−1
1 )(k0),

(B.8)

For κ7 we use the expansion of A3 in (4.7) around 0 given by

A3(εDX) = ε2
h1

ρ

√
gρ1(ρ− ρ1)

ρ
|DX |DX =: ε2A(0)

3 |DX |DX

and get

κ7 =
ρ√

g(ρ− ρ1)
A(0)

3 (b−B3)(k0)−
ρ1√

g(ρ− ρ1)
A(1)

4 (b−B4)(k0)−
1

ρ1
√
gρ1

A(1)
5 (a−B5)(k0). (B.9)

Finally, we write

κ8 =
ρ1

2
√
g(ρ− ρ1)

(b+)(1)(A(0)
4 )2 +

1

2ρ1
√
gρ1

(a+)(1)(A(0)
5 )2 = 0, (B.10)

where the last equality is obtained by direct substitution of constants from (5.14), (5.15), (B.2) and
(B.3) into (B.10).

Lemma B.1. Let γ := 1− ρ1

ρ be sufficiently small. Then, the coefficients κ̃ and κ̃j in (6.11) have the

following asymptotics:

κ̃ =
g1/4γ1/4

4h
1/4
1

√
2ρ1

,

κ̃1 = − g1/4

4h
5/4
1 γ3/4

√
2ρ1

+O(e−1/(8γ)), κ̃2 = −g1/4γ1/4h
3/4
1 (1− γ)

2
√
2ρ1

+O(e−1/(8γ)),

κ̃3 = − g1/4γ1/4

2h
1/4
1

√
2ρ1

+O(e−1/(8γ)), κ̃4 =
(1− γ)g1/4

4h
1/4
1 γ3/4

√
2ρ1

+O(e−1/(8γ)).

(B.11)

Proof. Note that, from (6.3) and (6.4), under the regime γ ≪ 1, we have

c0 =
√
gh1γ ≪ 1 and k0 =

1

4h1γ
≫ 1.
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The expressions (B.11) are derived from the above expressions κ and κj ’s using the expansions around
k0 of a±, b± in (3.6) and Bj in (4.7). These expressions are based on Qa, Qb, Qc from (3.6), which in

turn, depend on G(0), G
(0)
11 , G

(0)
12 . The latter satisfies the following expansions for k0 ≫ 1:

G
(0)
11 (k0) = k0 coth(h1k0) = k0 +O

(
1

γ
e−1/(2γ)

)
,

G
(0)
12 (k0) = −k0 csch(h1k0) = −O

(
1

γ
e−1/(4γ)

)
.

�
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