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A Bochner Formula on Path Space
for the Ricci Flow

Christopher Kennedy

Abstract

We generalize the classical Bochner formula for the heat flow on evolving manifolds (M, gt)t∈[0,T]

to an infinite-dimensional Bochner formula for martingales on parabolic path space PM of space-
time M = M × [0, T]. Our new Bochner formula and the inequalities that follow from it are strong
enough to characterize solutions of the Ricci flow. Specifically, we obtain characterizations of the
Ricci flow in terms of Bochner inequalities on parabolic path space. We also obtain gradient and
Hessian estimates for martingales on parabolic path space, as well as condensed proofs of the
prior characterizations of the Ricci flow from Haslhofer-Naber [HN18a]. Our results are parabolic
counterparts of the recent results in the elliptic setting from [HN18b].
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1 Introduction

The goal of this paper is to prove a Bochner formula on path space for the Ricci flow,
and to discuss some applications. This generalizes the Bochner formula on path space for
Einstein metrics from Haslhofer and Naber [HN18b].

Throughout this paper, we shall use the convention that an evolving family of manifolds
is a smooth and complete family of Riemannian manifolds (Mn, gt)t∈I such that

sup
M×I

(|Rm|+ |∂tg|+ |∇∂tg|) < ∞. (1.1)

1.1 Background on Characterizations of Einstein Metrics

To begin, let us recall some well-known characterizations of when a Riemannian manifold
(M, g) is a supersolution to the Einstein equations. Let Ht f denote the heat flow of a
function f : M → R. Then its gradient satisfies the Bochner formula

(∂t − ∆)|∇Ht f |2 = −2|∇2Ht f |2 + 2Rc(∇Ht f ,∇Ht f ). (1.2)

Using this, an equivalence between supersolutions of the Einstein equations, the classical
Bochner inequality and the gradient estimate readily follows, i.e.

Rc ≥ 0 ⇐⇒ (∂t − ∆)|∇Ht f |2 ≤ −2|∇2Ht f |2 (1.3)

⇐⇒ |∇Ht f | ≤ Ht|∇ f |, (1.4)

for all test functions f : M → R.

Until recently, however, there was no analogous characterization of solutions to the Ein-
stein equations. Such a characterization was discovered by Naber [Nab13] by employ-
ing the analytic properties of path space PM = C([0, ∞), M). This path space is natu-
rally endowed with a family of Wiener measures {Px} of Brownian motion starting at
x ∈ M. One then introduces a notion of stochastic parallel transport and the correspond-

ing family of parallel gradients {∇||
s }. Using this foundation, Naber [Nab13] developed

an infinite-dimensional generalization of the gradient estimate (1.4) to characterize solu-
tions of the Einstein equations. Namely, he proved that

Rc = 0 ⇐⇒
∣∣∣∣∇x

∫

PM
F dPx

∣∣∣∣ ≤
∫

PM
|∇||

0 F| dPx , (1.5)

for all test functions F : PM → R.

Interesting variants of these characterizations and estimates have been obtained in [CT18a],
[CT18b], [Wu16], [FW17] and [WW18].

2



Later, Haslhofer and Naber [HN18b] proved an infinite-dimensional generalization of
(1.3). Namely, they showed

Rc = 0 ⇐⇒ d|∇sFt|2 ≥ 〈∇t|∇sFt|2, dWt〉 (1.6)

for all martingales Ft : PM → R.

Using the infinite-dimensional Bochner formula (1.6), they gave a simpler proof of the
infinite-dimensional gradient estimate (1.5) in a similar vein to how the classical Bochner
formula (1.3) readily implies the classical gradient estimate (1.4).

1.2 Background on Characterizations of Ricci Flow

To motivate the characterization of solutions of the Ricci flow, let us first recall character-
izations of supersolutions, namely evolving Riemannian manifolds (M, gt)t∈I such that

∂tgt ≥ −2Rcgt . (1.7)

To begin, consider the heat flow Hst f on this evolving background, namely the solution
of the heat equation ∂tu = ∆gt u with initial condition f at time t = s. Then its gradient
satisfies the Bochner formula

(∂t − ∆gt)|∇Hst f |2 = −2|∇2Hst f |2 + (∂tgt + 2Rcgt)(∇Hst f ,∇Hst f ). (1.8)

Using this, an equivalence between supersolutions of the Ricci flow, the Bochner inequal-
ity and the gradient estimate readily follows, i.e.

∂tgt ≥ −2Rcgt ⇐⇒ (∂t − ∆gt)|∇Hst f |2 ≤ −2|∇2Hst f |2 (1.9)

⇐⇒ |∇Hst f | ≤ Hst|∇ f |, (1.10)

for all test functions f : M → R.

To generalize the inequality (1.10) to an infinite dimensional estimate, Haslhofer and
Naber [HN18a] considered space-time M = M × I equipped with the space-time con-
nection defined on vector fields by

∇XY = ∇gt

X Y, ∇tY = ∂tY +
1

2
∂tgt(Y, ·)#gt (1.11)

The main difference, compared to the infinite dimensional estimate that characterizes Ein-
stein metrics, is that the parabolic path space PTM only consists of continuous space-time
curves {γτ = (T − τ, xτ)} that move backwards along the time-axis with unit speed and
start at fixed time T ∈ I. This path space is naturally endowed with a family of parabolic
Wiener measures {P(x,T)} of Brownian motion starting at (x, T) ∈ M and parabolic

stochastic parallel gradients {∇||
σ}σ≥0 defined via (1.11). Using this framework, Hasl-

hofer and Naber proved an infinite-dimensional generalization of the gradient estimate
(1.10) that characterizes solutions of the Ricci flow. Namely, they proved that

∂tgt = −2Rcgt ⇐⇒
∣∣∣∣∇x

∫

PTM
F dP(x,T)

∣∣∣∣ ≤
∫

PTM
|∇||

0 F| dP(x,T) (1.12)
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for all test functions F : PTM → R.

Some nice variants of these characterizations have been obtained by Cheng and Thal-
maier [CT18b]. Moreover, Cabezas-Rivas and Haslhofer [CH19] found an interesting link
between estimates in the elliptic and parabolic settings.

However, there is no analogous treatment of the Bochner inequality (1.6) in the time-
dependent setting. The primary goal of this paper shall be to prove such an equivalent
notion.

1.3 Bochner Formula on Parabolic Path Space

Let (M, gt)t∈I be a family of evolving manifolds and let M = M × I be its space-time
equipped with the space-time connection defined on vector fields via (1.11). Next, as in
Section 1.2, we consider the parabolic path space PTM, given by

PTM :=
{
(xτ , T − τ)τ∈[0,T]|x ∈ C([0, T], M)

}
, (1.13)

and endow this space with the parabolic Wiener measure of Brownian motion on space-
time, P(x,T), based at (x, T) ∈ M as well as the associated parabolic parallel gradients

∇||
σ defined via stochastic parallel transport on space-time M. To explain these notions

in more detail, first recall that the solution to the heat equation ∂tu = ∆gt u with initial
condition f at time t = s is given by convolving with the heat kernel i.e.

Hst f (x) =
∫

M
H(x, t|y, s) f (y) dVgs (y). (1.14)

The Wiener measure P(x,T) is then uniquely characterized in terms of the heat kernel by

P(x,T) [Xτ1
∈ U1, . . . , Xτk

∈ Uk] (1.15)

=
∫

U1

· · ·
∫

Uk

H(x, T|x1, T−τ1)· · ·H(xk−1, T−τk−1|xk, T−τk)dVolg
T−τ1

(x1)· · ·dVolg
T−τk

(xk)

where Xτ is a Brownian motion on M starting at x. Moreover, the stochastic parallel

gradient ∇||
σ F(γ) ∈ (Tx M, gT) of a function F : PTM → R, is expressed in terms of the

Fréchet derivative by

DVσ F(γ) = 〈∇||
σ F(γ), v〉(Tx M,gT), (1.16)

where Vσ is the vector field along γ defined by Vσ
τ = P−1

τ v1[σ,T](τ) and {Pτ}, a family of
isometries, referred to as stochastic parallel transport.

With the aim of generalizing (1.9) to an infinite-dimensional estimate, we consider mar-
tingales on parabolic path space, i.e. Στ-adapted integrable processes Fτ : P(x,T)M → R

that satisfy

Fτ1
= E[Fτ2 |Στ1

], (1.17)
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where E[· | Στ ] denotes the conditional expectation with respect to the σ-algebra Στ of
events observable at time τ.

For example, if F(γ) = f (π1γτ1
), where f : M → R and π1 : M × I → I, then the

induced martingale Fτ = E[F | Στ ] for τ < τ1 is given by

Fτ(γ) = HT−τ1,T−τ f (π1γτ) (see example 2.18). (1.18)

Specifically, martingales generalize heat flow. This analogue between martingales and
heat kernels will motivate our development of the following generalized Bochner formula
on PM.

Theorem 1.1. (Generalized Bochner Formula on PM) Let Fτ : P(x,T)M → R be a martingale
on the parabolic path space of space-time. If σ ≥ 0 is fixed, then

d(|∇||
σ Fτ |2) = 〈∇||

τ |∇||
σ Fτ |2, dWτ〉+ (ġ + 2Rc)τ(∇||

τ Fτ ,∇||
σFτ) dτ

+ 2|∇||
τ∇||

σ Fτ |2 dτ + 2|∇||
σ Fσ|2 dδσ(τ), (1.19)

where (ġ + 2Rc)τ(v, w) = (ġt + 2Rcgt)|t=T−τ(P
−1
τ v, P−1

τ w) and ġ = d
dt g.

This generalized Bochner formula proves to be a fundamental tool in characterizing the
Ricci flow. Note that, if (M, gt)t∈I evolves by Ricci flow, this formula reduces to

d(|∇||
σ Fτ |2) = 〈∇||

τ |∇||
σ Fτ |2, dWτ〉+ 2|∇||

τ∇||
σ Fτ |2 dτ + 2|∇||

σ Fσ|2 dδσ(τ), (1.20)

and this trivially implies the following infinite-dimensional generalization of Bochner
inequality (1.9) in the time-dependent setting

d(|∇||
σ Fτ |2) ≥ 〈∇||

τ |∇||
σ Fτ |2, dWτ〉+ 2|∇||

τ∇||
σ Fτ |2 dτ + 2|∇||

σ Fσ|2 dδσ(τ). (1.21)

In contrast to the heat flow Bochner inequality, this generalized martingale Bochner in-
equality (1.21) as well as the estimates that follow from it are strong enough to help exhibit
solutions and not just supersolutions of the Ricci flow.

Specifically, Theorem 1.1 has four main applications:

• a characterization of the Ricci flow via Bochner inequalities for martingales on parabolic
path space;

• gradient estimates for martingales on parabolic path space;

• Hessian estimates for martingales on parabolic path space;

• a new and much simpler proof of the characterization of solutions of the Ricci flow
by Haslhofer and Naber in 2018 [HN18a, Theorem 1.22],
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which will be discussed in Section 1.4.

To explain the meaning of Theorem 1.1 in the simplest example, this generalized Bochner
formula on PM directly reduces to the standard Bochner formula in the case of 1-point
functions, i.e. when Fτ(γ) satisfies equation (1.18). That is, the evolution of |∇HT−τ1,T−τ f |2
for τ ≤ τ1 is calculated as

(
−∂τ − ∆gT−τ

)
|∇HT−τ1,T−τ f |2 ≤ −2|∇2HT−τ1,T−τ f |2 (1.22)

in Corollary 3.5. Setting s = T − τ1 and t = T − τ, this explicitly recovers (1.9) from
Section 1.2.

1.4 Applications

We will conclude with some main applications of our Bochner inequality (1.21). First, we
shall develop a new characterization of the Ricci flow.

Theorem 1.2. (New characterizations of the Ricci Flow) For an evolving family of manifolds
(Mn, gt)t∈I , the following are equivalent to solving the Ricci flow ∂tgt = −2Rcgt :

(C1) Martingales on parabolic path space satisfy the full Bochner inequality

d|∇||
σ Fτ |2 ≥ 〈∇τ|∇||

σ Fτ |2, dWτ〉+ 2|∇||
τ∇||

σ Fτ |2 dτ + 2|∇||
σ Fσ|2 dδσ(τ) (1.23)

(C2) Martingales on parabolic path space satisfy the dimensional Bochner inequality

d|∇||
σ Fτ |2 ≥ 〈∇τ|∇||

σ Fτ |2, dWτ〉+
2

n
|∆||

σ,τFτ |2 dτ + 2|∇||
σ Fσ|2 dδσ(τ) (1.24)

(C3) Martingales on parabolic path space satisfy the weak Bochner inequality

d|∇||
σ Fτ |2 ≥ 〈∇τ|∇||

σ Fτ |2, dWτ〉+ 2|∇||
σ Fσ|2 dδσ(τ) (1.25)

(C4) Martingales on parabolic path space satisfy the linear Bochner inequality

d|∇||
σ Fτ | ≥ 〈∇τ |∇||

σ Fτ |, dWτ〉+ |∇||
σ Fσ| dδσ(τ) (1.26)

(C5) If Fτ is a martingale, then τ → |∇||
σ Fτ | is a submartingale for every σ ≥ 0.

Second, we shall obtain gradient estimates for martingales on parabolic path space.

Theorem 1.3. (Gradient Estimates for Martingales on Parabolic Path Space) For an evolving
family of manifolds (Mn, gt)t∈I , the following are equivalent to solving the Ricci flow ∂tgt =
−2Rcgt :
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(G1) For any F ∈ L2(PM), σ fixed and τ1 ≤ τ2, the induced martingale satisfies the gradient
estimate

|∇||
σ Fτ1

| ≤ E(x,T)

[
|∇||

σ Fτ2 |
∣∣Στ1

]
. (1.27)

(G2) For any F ∈ L2(PM), σ fixed and τ1 ≤ τ2, the induced martingale satisfies the gradient
estimate

|∇||
σ Fτ1

|2 ≤ E(x,T)

[
|∇||

σ Fτ2 |2
∣∣Στ1

]
. (1.28)

Note that in the case of σ = τ1 = 0, (G1) reduces to the infinite-dimensional gradient
estimate (1.12).

Next, we shall obtain Hessian estimates for martingales on parabolic path space.

Theorem 1.4. (Hessian Estimates for Martingales on Parabolic Path Space) For an evolving
family of manifolds (Mn, gt)t∈I that solve the Ricci flow ∂tgt = −2Rcgt and a function F ∈
L2(PM), it holds that:

(H1) For each σ ≥ 0, we have the estimate

E(x,T)

[
|∇||

σ Fσ|2
]
+ 2E(x,T)

∫ T

0

[
|∇||

τ∇||
σ Fτ |2

]
dτ ≤ E(x,T)

[
|∇||

σ F|2
]

. (1.29)

(H2) We have the Poincaré Hessian estimate

E(x,T)

[(
F − E(x,T)[F]

)2
]

+ 2
∫ T

0

∫ T

0
E(x,T)

[
|∇||

τ∇||
σ Fτ |2

]
dσ dτ ≤

∫ T

0
E(x,T)

[
|∇||

σ F|2
]

dσ. (1.30)

(H3) We have the log-Sobolev Hessian estimate

E(x,T)

[
F2 ln(F2)

]
− E(x,T)[F

2] ln
(

E(x,T)[F
2]
)

(1.31)

+ 2
∫ T

0

∫ T

0
E(x,T)

[
(F2)τ |∇||

τ∇||
σ ln((F2)τ)|2

]
dσ dτ ≤ 4

∫ T

0
E(x,T)

[
|∇||

σ F|2
]

dσ.

Finally, our generalized Bochner formula on parabolic path space leads to a simpler
proof of the characterization of solutions of the Ricci flow found by Haslhofer and Naber
[HN18a].

Theorem 1.5. (Characterization of Solutions of the Ricci Flow) [HN18a, Theorem 1.22] For an
evolving family of manifolds (Mn, gt)t∈I , the following are equivalent:

(R1) (Mn, gt)t∈I solves the Ricci flow ∂tgt = −2Rcgt .

7



(R2) For every F ∈ L2(PM), we have the gradient estimate

∣∣∣∇xE(x,T)[F]
∣∣∣ ≤ E(x,T)[|∇||

0 F|]. (1.32)

(R3) For every F ∈ L2(PM), the induced martingale {Fτ}τ∈[0,T] satisfies the quadratic variation
estimate

E(x,T)

[
d[F, F]τ

dτ

]
≤ 2E(x,T)

[
|∇||

τ F|2
]

. (1.33)

(R4) The Ornstein-Uhlenbeck operator L(τ1,τ2) on parabolic path space L2(PM) satisfies the log-
Sobolev inequality

E(x,T)

[
(F2)τ2 log((F2)τ2)− (F2)τ1

log((F2)τ1
)
]
≤ 2E(x,T)

[
〈F,L(τ1,τ2)F〉H

]
. (1.34)

(R5) The Ornstein-Uhlenbeck operator L(τ1,τ2) on parabolic path space L2(PM) satisfies the
Poincaré inequality

E(x,T)

[
(Fτ2 − Fτ1

)2
]
≤ E(x,T)

[
〈F,L(τ1,τ2)

F〉H
]

. (1.35)

Our new proof is much shorter. For example, to derive (R2), integrate (C4) from 0 to T,
and take expectations

E(x,T)

[∫ T

0
d|∇||

σ Fτ | dτ

]
(C4)
≥ E(x,T)

[∫ T

0
〈∇τ |∇||

σ Fτ |, dWτ〉+ |∇||
σ Fσ|dδσ(τ)

]

=⇒ E(x,T)

[
|∇||

σ F|
]
− E(x,T)

[
|∇||

σ Fσ|
]
≥ 0 (1.36)

Then take limits as σ → 0 to yield the result

|∇xE(x,T)[F]| = E(x,T)

[
|∇||

0 F0|
]
≤ E(x,T)

[
|∇||

0 F|
]

. (1.37)

The article is organized as follows:

• In Section 2, we shall discuss the geometric and probabilistic preliminaries needed
for the proofs ouf our main theorems.

• In Section 3, we shall prove Theorem 1.1, the Bochner formula for martingales on
parabolic path space.

• In Section 4, we shall discuss the four aforementioned applications of our analysis
on path space, i.e. Theorems 1.2, 1.3, 1.4 and 1.5.

Acknowledgements. The author has been supported by the Ontario Graduate Scholar-
ship and he acknowledges his supervisor Robert Haslhofer for his invaluable guidance
and support in bringing this paper into fruition.
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2 Preliminaries

2.1 Geometric Preliminaries

To begin this section, we shall recall the concepts relevant to the construction of the frame
bundle on evolving manifolds. An expression of the canonical horizontal (Ha and Dt) and
vertical (Vab) vector fields and their commutators will complete this preliminary section.

In time-independent geometry, given a complete Riemannian manifold M, one consid-
ers the orthonormal frame bundle π : F → M, where the fibres are orthonormal maps
Fx := {u : R

n → Tx M orthonormal}. To each curve xt ∈ M, one can associate a horizon-
tal lift ut ∈ F. In particular, to each vector X ∈ TxM, given u ∈ π−1(x), one can associate
its horizontal lift X∗ ∈ TuF.

We shall now explain, following [Ham93] and [HN18a], how these notions can be adapted
to the time-dependent setting. To make the appropriate adjustment, we begin by defining
space-time M and the equipped connection ∇ as follows:

Definition 2.1. (Space-time) Let (M, gt)t∈I be an evolving family of Riemannian manifolds. The
space-time is then defined as M = M × I equipped with the space-time connection defined on
vector fields by ∇XY = ∇gt

X Y and ∇tY = ∂tY + 1
2 ∂tgt(Y, ·)#gt .

Also observe that this choice of connection is compatible with the metric, namely

d

dt
〈X, Y〉gt = 〈∇tX, Y〉gt + 〈X,∇tY〉gt . (2.1)

Generalizing the earlier time-independent construction, we consider the On-bundle π :
F → M, where the fibres are given by F(x,t) := {u : R

n → (Tx M, gt) orthonormal}.

To each curve γt ∈ M, we can now associate a horizontal lift ut ∈ F . Namely, given
u0 ∈ π−1(γ0), the curve ut is the unique solution of π(ut) = γt and ∇γ̇t(utea) = 0 for
a ∈ {1, 2, ..., n}, where ∇ is the space-time connection from Definition 2.1. More explicitly,
we provide the following formal definition:

Definition 2.2. (Horizontal lift) Given a vector αX + β∂t ∈ T(x,t)M and a frame u ∈ F(x,t),

there is a unique horizontal lift αX∗+ βDt satisfying π∗(αX∗ + βDt) = αX + β∂t. In particular,
X∗ is the horizontal lift of X ∈ Tx M with respect to the fixed metric gt.

Note that there are n + 1 canonical horizontal vector fields on F , namely the time-like
horizontal vector field Dt defined as the horizontal lift of ∂t and the space-like horizontal
vector fields {Ha}n

a=1 defined by Ha(u) = (uea)∗. Also note the notion of vertical vector

fields given by Vab(u) =
d
dε |ε=0(u exp(εAab)) where (Aab)cd = (δacδbd − δbcδad) ∈ Mn(R).

We now want to express these horizontal and vertical vector fields in local coordinates as
follows:

Definition 2.3. (Local coordinates) We view F as a sub-bundle of the GLn-bundle π : G → M
where G(x,t) := {u : R

n → (Tx M, gt) invertible, linear}. Then, when given local coordinates

(x1, ..., xn, t) on M, we get local coordinates (xi, t, e
j
a) on G, where e

j
a is defined by uea = e

j
a

∂
∂xj .
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Also note that on F we have δab = g(uea, ueb) = gije
i
ae

j
b and thus we can express the

inverse metric as

gij = ei
ae

j
a. (2.2)

It now remains in this section to both write out the canonical vector fields explicitly in
local coordinates and derive some commutator relations between them.

Lemma 2.4 (cf. [Ham93]). In local coordinates, the canonical horizontal vector fields Ha and Dt

and canonical vertical vector fields Vab can be expressed as





Ha = e
j
a

∂
∂xj − e

j
aek

bΓℓ
jk

∂
∂eℓb

Vab = e
j
b

∂

∂e
j
a

− e
j
a

∂

∂e
j
b

Dt = ∂t − 1
2 ∂̃tgabeℓb

∂
∂eℓa

,

(2.3)

where (∂̃tg)ab(u) := (∂tg)π(u)(uea, ueb).

Proof. The canonical horizontal vector fields, Ha are exactly the same as in [Ham93].

Next, considering the curve u(ε) = u exp(εAab), recall that e
j
c and Aabec are defined via

the relations uec = e
j
c

∂
∂xj and Aabec = δcaeb − δcbea. Then derive

u̇(0)ec = ė
j
c(0)

∂

∂xj
= uAabec = δacueb − δbcuea =

(
δace

j
b − δbce

j
a

) ∂

∂xj
, (2.4)

whence

Vab = u̇(0) = ė
j
c(0)

∂

∂e
j
c

=
(

δace
j
b − δbce

j
a

) ∂

∂e
j
c

= e
j
b

∂

∂e
j
a

− e
j
a

∂

∂e
j
b

. (2.5)

Finally we recall that Dt is defined as the horizontal lift of ∂t. More explicitly, given
u0 ∈ F , suppose π(u0) = (x0, t0) and γt := (x0, t0 + t) and let ut be the horizontal lift of

γt. Then, we have that Dt(u0) =
d
dt |t=0ut. Recalling Definition 2.1, and using the tensorial

transformation rule (̃∂tg)ab = ∂tgjke
j
aek

b (see equation (2.9) below), we compute

∇t

(
e

j
a

∂

∂xj

)
=

d(e
j
a)

dt

∂

∂xj
+ e

j
a ∇t

(
∂

∂xj

)

=
d(eℓa)

dt

∂

∂xℓ
+

1

2
e

j
a∂tgjkgkℓ ∂

∂xℓ

=
d(eℓa)

dt

∂

∂xℓ
+

1

2
e

j
a∂tgjkek

beℓb
∂

∂xℓ

=
d(eℓa)

dt

∂

∂xℓ
+

1

2
∂̃tgabeℓb

∂

∂xℓ
. (2.6)
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It follows that, since γ̇t = ∂t and utea = eℓa(t)
∂

∂xℓ
,

∇γ̇t(utea) = ∇t

(
eℓa(t)

∂

∂xℓ

)
=

(
d

dt
(eℓa(t)) +

1

2
∂̃tgabeℓb

)
∂

∂xℓ
= 0. (2.7)

By exhibiting Dt(u0) in local coordinates

Dt(u0) = 0 · ∂

∂xj
+ 1 · ∂

∂t
+

d

dt
|t=0(e

ℓ
a(t))

∂

∂eℓa
= ∂t −

1

2
∂̃tgabeℓb

∂

∂eℓa
, (2.8)

we conclude the proof.

We now recall that the time-dependent tensor fields T correspond to equivariant functions
T̃ on F . For example, a function f : M → R corresponds to the invariant function
f̃ = f ◦ π : F → R and a time-dependent two-tensor T = Tij(x, t) dxi ⊗ dxj corresponds

to an equivariant function T̃ = (T̃ab) : F → R
n×n via T̃ab(u) = Tπ(u)(uea, ueb). Note that

identities uea = e
j
a

∂
∂xj and ueb = ek

b
∂

∂xk yield the transformation rule

T̃ab = Tije
i
ae

j
b. (2.9)

Also observe that using equations (2.3) and (2.9), one obtains the formula

VabT̃cd = T̃bdδa
c − T̃adδb

c + T̃cbδa
d − T̃caδb

d. (2.10)

Proposition 2.5. (Derivatives) [HN18a] From the correspondence with equivariant functions,
the first and second order derivatives of tensor fields can be computed as follows





∇̃XT = X∗T̃

∇̃tT = DtT̃

∆̃T = ∑
n
a=1 HaHaT̃ =: ∆H T̃

(∇2 f )(uea , ueb) = HaHb f̃

(2.11)

Proof. Except for the fourth identity regarding the Hessian, these are either classical re-
sults from differential geometry or have already been proven in Lemmas 3.1 and 3.3 of
[HN18a]. For this last identity, write the canonical horizontal vector fields in local coordi-
nates and compute

HaHb f̃ =

(
e

j
a

∂

∂xj
− e

j
aek

cΓℓ
jk

∂

∂eℓc

)
e

p
b

∂

∂xp f̃

= e
j
aek

b

(
∂

∂xj

∂

∂xk
f̃ − Γ

p
jk

∂

∂xp f̃

)

= e
j
aek

b∇j∇k f

= ∇2 f (uea, ueb), (2.12)

thereby proving the proposition.
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Next we proceed to prove a few commutator relations between the newly defined vector
field, Dt, and the canonical horizontal and vertical vector fields.

Lemma 2.6 (cf. [Ham93]). The fundamental vectors fields on the frame bundle satisfy the fol-
lowing commutator relations





[Ha, Hb] = 1
2 RabcdVcd

[Vab, Hc] = δacHb − δbcHa

[Vab, Vcd] = δbdVac − δadVbc + δacVbd − δbcVad

[Dt, Ha] = − 1
2 ∂̃tgadHd +

1
2 Hb∂̃tgacVcb

[Dt, Vab] = 0.

(2.13)

Proof. We admit without proof the commutator relations not involving Dt as they can be
derived from basic differential geometry. It remains to check the final two commutator
relations. To prove the first of these, between Dt and the horizontal vector field Ha, we
compute

[∂t, Ha] =

[
∂t, e

j
a

∂

∂xj
− e

j
aek

bΓℓ
jk

∂

∂eℓb

]

= −e
j
aek

b∂tΓ
ℓ
jk

∂

∂eℓb

= −1

2
e

j
aek

b(g
ℓp(∇j(∂tgkp) +∇k(∂tgjp)−∇p(∂tgjk))

∂

∂eℓb

= −1

2
e

j
aek

beℓce
p
c

(
∇j(∂tgkp) +∇k(∂tgjp)−∇p(∂tgjk)

) ∂

∂eℓb

= −1

2
eℓc

(
(∇̃∂tg)abc + (∇̃∂tg)bac − (∇̃∂tg)cab

) ∂

∂eℓb

= −1

2
eℓc(Ha∂̃tgbc + Hb∂̃tgac − Hc∂̃tgab)

∂

∂eℓb

= −1

2
Ha(∂̃tgbc)e

ℓ
c

∂

∂eℓb
+

1

2
Hb(∂̃tgac)

(
eℓb

∂

∂eℓc
− eℓc

∂

∂eℓb

)

= −1

2
Ha(∂̃tgbc)e

ℓ
c

∂

∂eℓb
+

1

2
Hb(∂̃tgac)Vcb (2.14)
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and

[Dt − ∂t, Ha] = [−1

2
(∂̃tgcd)e

ℓ′
d

∂

∂eℓ′c

, Ha]

= −1

2
∂̃tgcd

[
eℓ

′
d

∂

∂eℓ′c

, Ha

]
+

1

2
Ha(∂̃tgcd)e

ℓ′
d

∂

∂eℓ′c

= −1

2
∂̃tgcdδc

aHd +
1

2
Ha(∂̃tgbc)e

ℓ
c

∂

∂eℓb

= −1

2
∂̃tgadHd +

1

2
Ha(∂̃tgbc)e

ℓ
c

∂

∂eℓb
. (2.15)

Next, we sum equations (2.14) and (2.15) to compute the desired commutator relation

[Dt, Ha] = [∂t, Ha] + [Dt − ∂t, Ha] = −1

2
∂̃tgadHd +

1

2
Hb(∂̃tgac)Vcb. (2.16)

Finally, using equations (2.3) and (2.10), the commutator of Dt and Vab is

[Dt, Vab] =

[
∂t −

1

2
(∂̃tgcd)e

ℓ′
d

∂

∂eℓ′c

, Vab

]

= −1

2
∂̃tgcd

[
eℓ

′
d

∂

∂eℓ′c

, Vab

]
+

1

2
Vab(∂̃tgcd)e

ℓ′
d

∂

∂eℓ′c

=
1

2
∂̃tgcd

(
eℓ

′
d

∂

∂eℓ
′

b

δa
c + eℓ

′
b

∂

∂eℓ′c

δa
d − eℓ

′
d

∂

∂eℓ′a

δb
c − eℓ

′
a

∂

∂eℓ′c

δb
d

)

+
1

2

(
∂̃tgbdδa

c + ∂̃tgcbδa
d − ∂̃tgadδb

c − ∂̃tgcaδb
d

)
eℓ

′
d

∂

∂eℓ
′

c

≡ 0, (2.17)

thereby proving this lemma on commuting canonical vector fields.

Corollary 2.7. If f̃ : F → R is an orthonormally invariant function, then

{
HaHb f̃ − HbHa f̃ = 0

∆H Ha f̃ − Ha∆H f̃ = R̃cabHb f̃ ,
(2.18)

where R̃cab(u) = Rcπ(u)(uea, ueb).

Proof. This is a direct application of the commutator relations from Lemma 2.6.

Proposition 2.8. Let f̃ : F → R be an orthonormally invariant function. Then

[Dt − ∆H , Ha] f̃ = −1

2
(∂̃tg + 2R̃c)ab Hb f̃ . (2.19)
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Proof. It readily follows from Lemma 2.6 and Corollary 2.7 that

[Dt − ∆H , Ha] f̃ = [Dt, Ha] f̃ − [∆H , Ha] f̃

= −1

2
∂̃tgadHd f̃ +

1

2
Hb(∂̃tgac)Vcb f̃ − R̃cabHb f̃

= −1

2
(∂̃tg + 2R̃c)ab Hb f̃ , (2.20)

thereby proving the proposition.
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2.2 Probabilistic Preliminaries

The principal goal of this section is to recall the notions of Brownian motion and stochas-
tic parallel transport in the setting of evolving manifolds as developed in [ACT08] and
[HN18a].

We first remark that it shall hereafter be assumed that in addition to the Riemannian
manifolds {Mt} being complete as in the previous section, they will also satisfy

sup
M

(|Rm|+ |∂tg|+ |∇∂tg|) < ∞. (2.21)

Horizontal curves {uτ}τ∈[0,T] ∈ F , where π(uτ) = (xτ , T − τ), correspond to curves

{wτ}τ∈[0,T] ∈ R
n (also known as the anti-development of uτ) via the following initial

value problem

{
duτ
dτ = Dτ + Ha(uτ)

dwa
τ

dτ

w0 = 0.
(2.22)

This definition of the anti-development in the time-dependent geometry setting appro-
priately motivates the following stochastic differential equation in the case of evolving
manifolds

{
dUτ = Dτ dτ + Ha(Uτ) ◦ dWa

τ

U0 = u.
(2.23)

We make a short note on notation that Wτ ∼
√

2Bτ refers to the Brownian motion in
R

n with rescaling by a factor of
√

2 such that it has quadratic variation d[W, W]τ =
2d[B, B]τ = 2 dτ and ◦ refers to the Stratonovich integral in differential notation.

Next, by demonstrating that this equation satisfies existence and uniqueness criterion as
well as Itô’s lemma, the notions of Brownian motion, via projection onto M, and stochas-
tic parallel transport can be formalized.

Proposition 2.9. (Existence, uniqueness and Itô’s lemma) The stochastic differential equation
(2.23) has a unique solution {Uτ}τ∈[0,T] that satisfies π2(Uτ) = T − τ. Moreover, given f̃ :

F → R is of class C2, then the solution Uτ satisfies

d f̃ (Uτ) = Dτ f̃ (Uτ) dτ + 〈(H f̃ )(Uτ), dWτ〉+ ∆H( f̃ )(Uτ) dτ. (2.24)

Proof. This result has already been proven in Proposition 3.7 of [HN18b].

We shall now continue with defining the notions of Brownian motion and stochastic par-
allel transport, from [HN18a], in the setting of time-evolving families of Riemannian man-
ifolds.

Definition 2.10. (Brownian motion on space time) We call π(Uτ) = (Xτ , T − τ) the Brownian
motion on space time M = M × I with base point π(u) = (x, T).
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Definition 2.11. (Stochastic parallel transport) The family of isometries

{
Pτ = U0U−1

τ : (TXτ M, gT−τ) → (Tx M, gT)
}

(2.25)

is called the stochastic parallel transport along the Brownian curve Xτ .

This Brownian motion now inherits a path based space, diffusion measure and filtration.
First, we denote by P0R

n the based path space on R
n, namely the space of continuous

curves {wτ|w0 = 0}τ∈[0,T] ⊂ R
n.

Definition 2.12. (Based path spaces) Let PuF and P(x,T)M be the spaces of continuous curves,

{uτ |u0 = u, π2(uτ) = T − τ}τ∈[0,T] ⊂ F and {γτ = (xτ , T − τ)|γ0 = (x, T)}τ∈[0,T] respec-

tively.

To construct the Wiener measure, we first observe that solving the stochastic differential
equation (2.23) yields a map U : P0R

n → PuF . Moreover, the projection map π : F → M
induces a map Π : PuF → P(x,T)M.

Definition 2.13. (Wiener measure) Let P0 be the Wiener measure on path space P0R
n. We then

say that Pu := U∗(P0) and P(x,T) := Π∗Pu are the Wiener measures of horizontal Brownian
motion on F and Brownian motion on space-time M respectively.

Moreover, we can uniquely characterize the Wiener measure in terms of the heat kernel.

Proposition 2.14. [HN18a] Let
{

τj

}k

j=1
be a partition of [0, T], Uj ⊆ M and γ0 = (x, T). Then

P(x,T)

[
Xτj

∈ Uj, ∀j ∈ 1, ..., k
]
=
∫

×k
1Uj

ΠjH(xj−1, T − τj−1|xj, T − τj)⊗ dVolgT−τj
(yj)

(2.26)

uniquely characterizes the Wiener measure on P(x,T)M.

Proof. The proof follows as in Proposition 3.31 of [HN18a].

Next, we recall that the path space P0R
n comes equipped with an intrinsic filtration ΣR

n

τ

generated by evaluation maps {eσ : P0R
n → R

n|eσ(w) = wσ , σ ≤ τ}.

Definition 2.15. (Filtrations on PuF and P(x,T)M) The filtrations on PuF and P(x,T)M are

simply the respective push-forwards ΣM
τ := (Π ◦U)∗ΣR

n

τ and ΣF
τ := U∗ΣR

n

τ .

A short reiteration of induced martingales as well as parallel and Malliavin gradients are
constructed in the time-dependent setting will now complete this section.

Definition 2.16. (Induced martingale) Let F : P(x,T)M → R be integrable. Then, we define the

induced martingale as Fτ(γ) := E[F|Στ ](γ).

Using this definition, the conditional expectation can now be characterized by a represen-
tation formula.
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Proposition 2.17. (Conditional expectation) [HN18a] Suppose the conditional expectation is as
defined. Then, for almost every Brownian curve {γτ}τ∈[0,T],

Fτ(γ) := E[F|Στ ](γ) =
∫

PγτM
F(γ|[0,τ] ∗ γ′)dPγτ(γ

′), (2.27)

where we integrate over all Brownian curves γ′ in the based path space PγτM with respect to
Wiener measure Pγτ and ∗ denotes concatenation of the two curves γ|[0,τ] and γ′.

Proof. The proof follows as in Proposition 3.19 of [HN18a].

To define the two notions of gradients, we first recall that cylinder functions are of the
form u ◦ eσ, where eσ : P(x,T)M → Mk are k-point evaluation maps, namely eσ : γ 7→
(π1γσ1

, ..., π1γσk
), and u : Mk → R is compactly supported.

Example 2.18. Let F(γ) := f ◦ eτ1
(γ) = f (π1γτ1

). Then the induced martingale of F is given
for τ > τ1 by

Fτ(γ) =
∫

PγτM
F(γ|[0,τ] ∗ γ′) dPγτ(γ

′)

=
∫

PγτM
f (π1γτ1

) dPγτ(γ
′)

= f (Xτ1
), (2.28)

and for τ < τ1 by

Fτ(γ) =
∫

PγτM
F(γ|[0,τ] ∗ γ′) dPγτ(γ

′)

=
∫

PγτM
f (π1γ′

τ1−τ) dPγτ(γ
′)

=
∫

M
f (y)H(Xτ , T − τ|y, T − τ1) dVgT−τ1

(y)

= HT−τ1,T−τ f (π1γτ). (2.29)

Definition 2.19. (Parallel gradient) Let σ ∈ [0, T] and let F : P(x,T)M → R be a cylinder

function. Then the σ-parallel gradient is the almost everywhere uniquely defined function ∇||
σ F :

P(x,T)M → (Tx M, gT) such that

DVσ F(γ) = 〈∇||
σ F(γ), v〉(Tx M,gT), (2.30)

for almost every Brownian curve γ and v ∈ (Tx M, gT), where Vσ
τ = P−1

τ v1[σ,T](τ). Here, DV

denotes the Fréchet derivative.

Example 2.20. Let F = u ◦ eτ be a k-point function with partition
{

τj

}k

j=1
. Then the parallel

gradient of F is given by

∇||
σ F = e∗

τ


 ∑

τj≥σ

Pτj
grad(j)

gT−τj
u


 . (2.31)
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Finally, we let H be the Hilbert space of W1,2 curves in (Tx M, gT) with v0 = 0 equipped
with the natural Sobolev inner product given by

〈u, v〉H :=
∫ T

0
〈u̇τ , v̇τ〉(Tx M,gT)

dτ. (2.32)

Definition 2.21. (Malliavin gradient) Let F : P(x,T)M → R be a cylinder function. The Malli-

avin gradient is the almost everywhere uniquely defined function ∇HF : P(x,T)M → H such
that

DV F(γ) = 〈∇HF(γ), v〉H , (2.33)

for almost every Brownian curve γ and v ∈ H, where Vτ = P−1
τ vτ .

Definition 2.22. (Skorokhod integral) The adjoint of the Malliavin gradient, also known as the
Skorokhod integral, is the uniquely defined operator (∇H)∗ : L2(PM) → L2(PM) such that

E[F(∇H)∗g] = E

[
〈∇HF, g〉H

]
, (2.34)

for all F, g ∈ L2(PM).

Definition 2.23. (Ornstein-Uhlenbeck operator) The Ornstein-Uhlenbeck operator is defined as

L(τ1,τ2) := (∇H)∗∇H (2.35)

where ∇H and (∇H)∗ are the Malliavin gradient and its adjoint from (2.33) and (2.34) respec-
tively.
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3 Bochner Formula on Parabolic Path Space

For convenience of the reader, we shall first recall and prove the statement of Bochner’s
formula in the time-dependent setting.

Lemma 3.1. (Bochner) First let (M, gt)t∈I be a family of Riemannian manifolds and gradi
gt

=

g
ij
t ∂j where ∆gt be the Laplace-Beltrami operator. Then the evolution of |∇u|2gt

is given by

1

2
(−∂t + ∆gt)(|∇u|2gt

) (3.1)

= 〈∇u,∇(−∂t + ∆gt)u〉+ |∇2u|2 + 1

2
(∂tgt + 2Rcgt)(grad u, grad u).

Proof. We evaluate both

1

2
∆gt(|∇u|2gt

) =
1

2
∇i∇i(∇ju∇ju)

=
(
∇i∇ju

) (
∇i∇ju

)
+ (∇ju)

(
∇i∇i∇ju

)

= |∇2u|2 + (∇ju)(∇j∆gt u) + Rcgt(grad u, grad u) (3.2)

and

1

2
∂t(|∇u|2gt

) =
1

2
∂tg

ij
t ∇iu∇ju + g

ij
t ∇iu∂t(∇ju)

= −1

2
∂tgkℓgkigℓj∇iu∇ju + g

ij
t ∇iu∂t(∇ju)

= 〈∇u,∇(∂tu)〉 −
1

2
∂tgt(grad u, grad u). (3.3)

We then deduce the Bochner formula as the difference of the two results.

Theorem 3.2. (Martingale representation theorem) If Fτ : P(x,T)M → R is a martingale on

parabolic path space and Fτ ∈ D(∇||
τ ), then Fτ solves stochastic differential equation

{
dFτ = 〈∇||

τ Fτ , dWτ〉
F|τ=0 = F0.

(3.4)

Proof. By approximation (cf. [HN18a, Sec 2.4]), it suffices to prove the theorem in the
case where Fτ is a martingale induced by a k-point cylinder function. Namely, let F(γ) =
f (π1γτ1

, ..., π1γτk
), where f : Mk → R and we recall that γτ = (Xτ , T − τ). Also let

Fτ = E(x,T)[F|Στ ] be the induced martingale. Then, for τ ∈ (τℓ, τℓ+1) by Propositions 2.17
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and then 2.14, we calculate

Fτ(γ) =
∫

PγτM
F(γ|[0,τ] ∗ γ′) dPγτ(γ

′)

=
∫

PγτM
f (π1γτ1

, ..., π1γτℓ , π1γ
′
τℓ+1−τ, ..., π1γ

′
τk−τ) dPγτ(γ

′)

=
∫

Mk−ℓ

f (Xτ1
, . . . , Xτℓ , yℓ+1, . . . , yk)H(Xτ , T − τ|yℓ+1, T − τℓ+1)

H(yℓ+1, T − τℓ+1|yℓ+2, T − τℓ+2) · · · H(yk−1, T − τk−1|yk, T − τk)

dVgT−τ
ℓ+1

(yℓ+1) · · · dVgT−τk
(yk)

=: fτ(Xτ1
, .., Xτℓ , Xτ). (3.5)

Note that, for (x1, . . . , xℓ) fixed, (x, τ) → fτ(x1, . . . , xℓ, x) is uniformly Lipschitz in τ and

solves (∂τ + ∆(ℓ+1)) fτ = 0, where ∆(ℓ+1) acts on the last entry.

Consider the lift f̃τ := fτ ◦ ⊗ℓ+1
1 π1 ◦ ⊗ℓ+1

1 π. Also let F̃τ := Fτ ◦ Π, where Π : PF → PM.

Then we have that F̃τ(U) = f̃τ(Uτ1
, ..., Uτℓ , Uτ), which satisfies (Dτ + ∆

(ℓ+1)
H ) f̃τ = 0 by

applying Proposition 2.5. Also note that herein we shall denote the vector (H1 f̃ , ...Hn f̃ )
by H f̃ .

Then, by Proposition 2.9, we calculate

dF̃τ(U) = d( f̃τ(Uτ1
, ..., Uτℓ , Uτ)) = 〈H(ℓ+1)( f̃ )(Uτ1

, ..., Uτℓ , Uτ), dWτ〉
+
(

Dτ + ∆
(ℓ+1)
H

)
f̃τ(Uτ1

, ..., Uτℓ, Uτ) dτ

= 〈H(ℓ+1)( f̃ )(Uτ1
, ..., Uτℓ , Uτ), dWτ〉. (3.6)

Next, we project down to M by Proposition 2.5 as follows

H
(ℓ+1)
a f̃τ(Uτ1

, ..., Uτℓ, Uτ) = (Uτea)
∗ f̃τ(Uτ1

, ..., Uτℓ , Uτ)

= (Uτea) fτ(Xτ1
, ...Xτℓ , Xτ)

= 〈Uτea, grad(ℓ+1)
gT−τ

fτ(Xτ1
, ..., Xτℓ , Xτ)〉(TXτ M,gT−τ)

= 〈PτUτea, Pτgrad(ℓ+1)
gT−τ

fτ(Xτ1
, ..., Xτℓ , Xτ)〉(Tx M,gT)

= 〈U0ea,∇||
τ Fτ(γ)〉(Tx M,gT), (3.7)

whence

H
(ℓ+1)
a ( f̃τ) dWa

τ = 〈∇||
τ Fτ(γ), U0ea〉 dWa

τ = 〈∇||
τ Fτ(γ), dWτ〉, (3.8)

and we deduce that

dFτ(γ) = dF̃τ(U) = 〈∇||
τ Fτ(γ), dWτ〉 (3.9)

to complete the proof.
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Theorem 3.3. (Evolution of the parallel gradient) If Fτ : P(x,T)M → R is a martingale on

parabolic path space, and σ ≥ 0 is fixed, then ∇||
σ Fτ : P(x,T)M → (T(x,T)M, gT) satisfies the

stochastic differential equation

d(∇||
σ Fτ) = 〈∇||

τ∇||
σ Fτ , dWτ〉+

1

2
(ġ + 2Rc)τ(∇||

τ Fτ) dτ +∇||
σ Fσdδσ(τ), (3.10)

where 〈(ġ + 2Rc)τ(v), w〉(Tx M,gT) = (ġt + 2Rcgt)|t=T−τ(P
−1
τ v, P−1

τ w) and ġ = d
dt g.

Proof. As Fτ is Στ-measurable, we have that ∇||
σ Fτ ≡ 0 for σ > τ. Noting d(∇||

σ Fτ) is
continuous except for a jump discontinuity at σ = τ, we calculate

d(∇||
σ Fτ) = d(∇||

σ Fτ)cont +
(
∇||

σ Fσ+ −∇||
σ Fσ−

)
dδσ(τ)

= d(∇||
σ Fτ)cont +∇||

σ Fσ dδσ(τ). (3.11)

It remains to show that the identity holds for σ ≤ τ. In particular, we’ll show that the
continuous parts of the measures agree.

By approximation (cf. [HN18a, Sec 2.4]), it suffices to prove the theorem in the case where
Fτ is a martingale induced by a k-point cylinder function as in the previous proof. Now,
as σ is fixed, it is sufficient for us to consider the evolution equation for τ ∈ (τℓ, τℓ+1),
using the parallel gradient from example 2.20,

∇||
σ Fτ(γ) = ∑

τj≥σ

Pτj
∇(j) fτ(Xτ1

, ..., Xτℓ , Xτ) + Pτ∇(ℓ+1) fτ(Xτ1
, ..., Xτℓ , Xτ), (3.12)

which can be lifted to the frame bundle and represented by Proposition 2.5 as

Ga(U) : = 〈U0ea,∇||
σFτ(ΠU)〉

= ∑
τj≥σ

〈Uτj
ea,∇(j) fτ(Xτ1

, ..., Xτℓ , Xτ)〉

+ 〈Uτea,∇(ℓ+1) fτ(Xτ1
, ..., Xτℓ , Xτ)〉

= ∑
τj≥σ

H
(j)
a f̃τ(Uτ1

, ..., Uτℓ, Uτ) + H
(ℓ+1)
a f̃τ(Uτ1

, ..., Uτℓ, Uτ). (3.13)

Applying Propositions 2.8 and 2.9 and the fact that (Dτ +∆
(ℓ+1)
H ) f̃τ = 0 from the previous
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proof, we have that

dGa(U) = ∑
τk≥σ

H
(ℓ+1)
b H

(k)
a f̃τ(Uτ1

, ..., Uτℓ, Uτ) dWb
τ

+ H
(ℓ+1)
b H

(ℓ+1)
a f̃τ(Uτ1

, ..., Uτℓ, Uτ) dWb
τ

+ ∑
τk≥σ

(
Dτ + ∆

(ℓ+1)
H

)
H

(k)
a f̃τ(Uτ1

, ..., Uτℓ, Uτ) dτ

+
(

Dτ + ∆
(ℓ+1)
H

)
H

(ℓ+1)
a f̃τ(Uτ1

, ..., Uτℓ , Uτ) dτ

= ∑
τk≥σ

H
(ℓ+1)
b H

(k)
a f̃τ(Uτ1

, ..., Uτℓ, Uτ) dWb
τ

+ H
(ℓ+1)
b H

(ℓ+1)
a f̃τ(Uτ1

, ..., Uτℓ, Uτ) dWb
τ

+ ∑
τk≥σ

(
H

(k)
a

(
Dτ + ∆

(ℓ+1)
H

)
+ [Dτ + ∆

(ℓ+1)
H , H

(k)
a ]
)

f̃τ(Uτ1
, ..., Uτℓ, Uτ) dτ

+
(

H
(ℓ+1)
a

(
Dτ + ∆

(ℓ+1)
H

)
+ [Dτ + ∆

(ℓ+1)
H , H

(ℓ+1)
a ]

)
f̃τ(Uτ1

, ..., Uτℓ, Uτ) dτ

= ∑
τk≥σ

H
(ℓ+1)
b H

(k)
a f̃τ(Uτ1

, ..., Uτℓ, Uτ) dWb
τ (3.14)

+ H
(ℓ+1)
b H

(ℓ+1)
a f̃τ(Uτ1

, ..., Uτℓ, Uτ) dWb
τ

+
1

2
(˜̇g + 2R̃c)ab(Uτ)H

(ℓ+1)
b f̃τ(Uτ1

, ..., Uτℓ, Uτ) dτ.

Finally, we project down onto M by Proposition 2.5 as follows,

H
(ℓ+1)
b H

(ℓ+1)
a f̃τ(Uτ1

, ..., Uτℓ , Uτ)

= (Uτeb)
∗(Uτea)

∗ f̃τ(Uτ1
, ..., Uτℓ , Uτ)

=
(
∇(ℓ+1)∇(ℓ+1) fτ(Xτ1

, ..., Xτℓ , Xτ)
)
(Uτeb, Uτea)

= 〈Uτeb ⊗ Uτea,∇(ℓ+1)∇(ℓ+1) fτ(Xτ1
, ..., Xτℓ , Xτ)〉

=
〈
U0eb ⊗ U0ea, (Pτ ⊗ Pτ)

(
∇(ℓ+1)∇(ℓ+1) fτ(Xτ1

, ..., Xτℓ , Xτ)
)〉

, (3.15)

and similarly,

H
(ℓ+1)
b H

(k)
a f̃τ(Uτ1

, ..., Uτℓ , Uτ)

= 〈Uτeb ⊗ Uτk
ea,∇(ℓ+1)∇(k) fτ(Xτ1

, ..., Xτℓ , Xτ)〉
=
〈
U0eb ⊗ U0ea, (Pτ ⊗ Pτk

)
(
∇(ℓ+1)∇(k) fτ(Xτ1

, ..., Xτℓ , Xτ)
)〉

, (3.16)
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whence

∑
τk≥σ

(H
(ℓ+1)
b H

(k)
a )( f̃τ) dWb

τ + (H
(ℓ+1)
b H

(ℓ+1)
a )( f̃τ) dWb

τ

=

〈
∑

τk≥σ

(Pτ ⊗ Pτk
)∇(ℓ+1)∇(k) fτ , U0eb ⊗ U0ea

〉
dWb

τ

+ 〈(Pτ ⊗ Pτ)∇(ℓ+1)∇(ℓ+1) fτ , U0eb ⊗ U0ea〉 dWb
τ

=

〈
∑

τk≥σ

(Pτ ⊗ Pτk
)∇(ℓ+1)∇(k) fτ , dWτ ⊗ U0ea

〉

+ 〈(Pτ ⊗ Pτ)∇(ℓ+1)∇(ℓ+1) fτ , dWτ ⊗ U0ea〉

=

〈
∑

τk≥σ

(Pτ ⊗ Pτk
)∇(ℓ+1)∇(k) fτ + (Pτ ⊗ Pτ)∇(ℓ+1)∇(ℓ+1) fτ, dWτ ⊗ U0ea

〉

= 〈∇||
τ∇||

σ Fτ(γ), dWτ ⊗ U0ea〉. (3.17)

Finally, we check that

(˜̇g + 2R̃c)ab(Uτ)H
(ℓ+1)
b f̃τ(Uτ1

, ..., Uτℓ, Uτ) dτ

= (ġ + 2Rc)π(Uτ)(Uτea, Uτeb)〈∇(ℓ+1) fτ(Xτ1
, . . . , Xτℓ , Xτ), Uτeb〉 dτ

= (ġ + 2Rc)π(Uτ)

(
Uτea, 〈∇(ℓ+1) fτ(Xτ1

, . . . , Xτℓ , Xτ), Uτeb〉Uτeb

)
dτ

= (ġ + 2Rc)π(Uτ)

(
∇(ℓ+1) fτ(Xτ1

, . . . , Xτℓ , Xτ), Uτea

)
dτ

= (ġ + 2Rc)|t=T−τ(P
−1
τ ∇||

τ Fτ , P−1
τ U0ea) dτ

= 〈(ġ + 2Rc)τ(∇||
τ Fτ) dτ, U0ea〉 (3.18)

which completes the proof.

Theorem 3.4. (Generalized Bochner Formula on PM) Let Fτ : P(x,T)M → R be a martingale.

If σ ≥ 0 is fixed, then ∇||
σ Fτ : P(x,T)M → (Tx M, gT) satisfies

d(|∇||
σ Fτ |2) = 〈∇||

τ |∇||
σ Fτ |2, dWτ〉+ (ġ + 2Rc)τ(∇||

τ Fτ ,∇||
σFτ) dτ

+ 2|∇||
τ∇||

σ Fτ |2 dτ + 2|∇||
σ Fσ|2dδσ(τ), (3.19)

where (ġ + 2Rc)τ(v, w) = (ġt + 2Rcgt)|t=T−τ(P
−1
τ v, P−1

τ w) and ġ = d
dt g.

Proof. As Fτ is Στ-measurable, we have that ∇||
σ Fτ ≡ 0 for σ > τ. Noting d(∇||

σ Fτ) is
continuous except for the jump discontinuity at σ = τ, we calculate

d|∇||
σ Fτ |2 = 2〈∇||

σ Fτ , d(∇||
σ Fτ)〉

= 2
〈
∇||

σ Fτ , d(∇||
σ Fτ)〉cont +

(
∇||

σ Fσ+ −∇||
σ Fσ−

)
dδσ(τ)

〉

= d(|∇||
σ Fτ |2)cont + 2|∇||

σ Fσ|2 dδσ(τ). (3.20)
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It remains to show that the identity holds for σ ≤ τ. In particular, it remains to show that
the continuous parts of the measures agree.

In the rightly-continuous case by Itô calculus and Theorem 3.3, we calculate the quadratic

variation d[∇||
σ Fτ ,∇||

σ Fτ ] = 2|∇||
τ∇||

σ Fτ |2 dτ for σ ≤ τ and then

d(|∇||
σ Fτ |2) = 2〈∇||

σ Fτ , d(∇||
σ Fτ)〉+ d[∇||

σ Fτ ,∇||
σ Fτ ]

= 〈∇||
τ |∇||

σ Fτ |2, dWτ〉+ (ġ + 2Rc)τ(∇||
τ Fτ ,∇||

σFτ) dτ (3.21)

+ 2|∇||
τ∇||

σ Fτ |2 dτ,

which concludes the proof.

Corollary 3.5. (Bochner) The generalized Bochner formula on PM (Theorem 3.4) reduces to the
standard Bochner formula (Lemma 3.1) in the case of 1-point functions. That is, the evolution of
|∇HT−τ1,T−τ f |2 for τ ≤ τ1 is given by

1

2

(
∂τ + ∆gT−τ

)
|∇HT−τ1,T−τ f |2

= |∇2HT−τ1,T−τ f |2 + 1

2
(ġ + 2Rc)|t=T−τ(∇HT−τ1,T−τ f ,∇HT−τ1,T−τ f ). (3.22)

Proof. Fix σ = 0 in the evolution equation from Theorem 3.4. Next, we shall compute the

evolution of |∇||
0 Fτ |2, where

Fτ(γ) :=

{
HT−τ1,T−τ f (π1γτ), τ < τ1

f (π1γτ1
), τ ≥ τ1

(3.23)

is the martingale induced by f (π1γτ1
). Then, for τ ∈ [0, τ1], we calculate

|∇||
0 Fτ |(γ) = |∇||

τ Fτ |(γ) = |∇HT−τ1,T−τ f |(π1γτ) (3.24)

as well as

|∇||
0∇

||
τ Fτ |(γ) = |∇2HT−τ1,T−τ f |(π1γτ). (3.25)

By Theorem 3.4, we then deduce that

d(|∇HT−τ1,T−τ f |2)− 〈∇||
τ |∇HT−τ1,T−τ|2, dWτ〉

= 2|∇2HT−τ1,T−τ f |2 dτ + (ġ + 2Rc)|t=T−τ(∇HT−τ1,T−τ f ,∇HT−τ1,T−τ f ) dτ (3.26)

Moreover, for process Xτ = |∇HT−τ1,T−τ f |2(π1γτ), by applying Itô calculus as in Propo-
sition 2.9, we have that

d(|∇HT−τ1,T−τ f |2)− 〈∇||
τ |∇HT−τ1,T−τ|2, dWτ〉

=
(
∂τ + ∆gT−τ

)
|∇HT−τ1,T−τ f |2 dτ. (3.27)
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Therefore, by comparing equations (3.26) and (3.27), we conclude that

1

2

(
∂τ + ∆gT−τ

)
|∇HT−τ1,T−τ f |2

= |∇2HT−τ1,T−τ f |2 + 1

2
(ġ + 2Rc)|t=T−τ(∇HT−τ1,T−τ f ,∇HT−τ1,T−τ f ), (3.28)

which completes the proof.
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4 Applications of the Bochner Formula on Parabolic Path

Space

We shall now proceed by applying the Bochner formula on path space to both characterize
the Ricci flow and develop gradient and Hessian estimates for martingales on parabolic
path space.

4.1 Proof of the Bochner Inequality on Parabolic Path Space

Proof of Theorem 1.2. Using the formalism developed in the last section, we shall prove the
equivalencies between the main estimates that characterize the Ricci flow.

(R1) =⇒ (C1) =⇒ (C2) =⇒ (C3): If (M, gt)t∈I evolves by Ricci flow ∂tgt = −2Rcgt

and Fτ : P(x,T)M → R is a martingale on parabolic path space, then Theorem 1.1 gives

d|∇||
σ Fτ |2 = 〈∇||

τ |∇||
σ Fτ |2, dWτ〉+ 2|∇||

τ∇||
σ Fτ |2 dτ + 2|∇||

σ Fσ|2dδσ(τ), (4.1)

thus proving (C1).

Next, to show (C2), calculate

|∆||
σ,τ Fτ |2 =

∣∣∣∣g
ij
(
∇||

σ∇||
τ Fτ

)
ij

∣∣∣∣
2

≤ |gij|2|∇||
σ∇||

τ Fτ |2 = n|∇||
σ∇||

τ Fτ |2, (4.2)

and finally show (C3) by simply dropping the non-negative term 2
n |∆

||
σ,τFτ |2 in (C2).

(C1) =⇒ (C4) ⇐⇒ (C5): To prove (C4), first apply Itô’s lemma to the left-hand
side of the full Bochner inequality (C1) to get

2|∇||
σ Fτ |〈∇||

τ |∇||
σ Fτ |, dWτ〉+ 2|∇||

τ∇||
σ Fτ |2 dτ + 2|∇||

σ Fσ|2dδσ(τ)

= 〈∇||
τ |∇||

σ Fτ |2, dWτ〉+ 2|∇||
τ∇||

σ Fτ |2 dτ + 2|∇||
σ Fσ|2δσ(τ)

(C1)
≤ d|∇||

σ Fτ |2

= 2|∇||
σ Fτ | d|∇||

σ Fτ |+ d
[
|∇||

σ Fτ |, |∇||
σ Fτ |

]
τ

= 2|∇||
σ Fτ | d|∇||

σ Fτ |+ 2|∇||
τ |∇||

σ Fτ ||2 dτ

≤ 2|∇||
σ Fτ | d|∇||

σ Fτ |+ 2|∇||
τ∇||

σ Fτ |2 dτ. (4.3)

Rearranging this inequality and applying (C1), we derive (C4), namely

d|∇||
σ Fτ | ≥ 〈∇τ |∇||

σ Fτ |, dWτ〉+ |∇||
σ Fσ|dδσ(τ). (4.4)

Finally, (C4) is satisfied if and only if Fτ is a submartingale (cf. Theorem 3.2) (C5) also
holds. The remaining equivalencies will be proved in tandem with the results in the
subsequent few theorems.
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4.2 Proof of Gradient Estimates for Martingales

Proof of Theorem 1.3. (C5) =⇒ (G1) =⇒ (G2): The implication of (G1) follows from

the definition that if τ → |∇||
σ Fτ | is a submartingale for every σ ≥ 0, then for τ̃ ≥ τ,

|∇||
σ Fτ | ≤ E

[
|∇||

σ Fτ̃ |
∣∣Στ

]
. Finally, to prove (G2), apply (G1) and Cauchy-Schwarz to get

|∇||
σ Fτ |2 ≤

(
E

[
|∇||

σ Fτ̃ |
∣∣Στ

])2
≤ E

[
|∇||

σ Fτ̃ |2
∣∣Στ

]
· E[1

∣∣Στ ] = E

[
|∇||

σ Fτ̃ |2
∣∣Στ

]
. (4.5)

The converse implications shall be proven along with later results.

4.3 Proof of Hessian Estimates for Martingales

Proof of Theorem 1.4. (C1) =⇒ (H1): To prove (H1), fix σ ≥ 0 and then integrate (C1)
from 0 to T as well as take expectations

E(x,T)

[
|∇||

σ F|2
]
− E(x,T)

[
|∇||

σ Fσ|2|
]

(C1)
≥ E(x,T)

[∫ T

0
〈∇τ |∇||

σ Fτ |2, dWτ〉
]
+ 2E(x,T)

[∫ T

0
|∇||

τ∇||
σ Fτ |2 dτ

]

= 2E(x,T)

[∫ T

0
|∇||

τ∇||
σ Fτ |2 dτ

]
. (4.6)

(H1) =⇒ (H2): To prove (H2), apply Itô isometry and then integrate (H1) from 0 to T
with respect to σ as well as take expectations

E(x,T)

[
(F − E(x,T)[F])

2
]
= E(x,T)

[∫ T

0
|∇||

σ Fσ|2 dσ

]

(H1)
≤ E(x,T)

[∫ T

0
|∇||

σ F|2 dσ

]
(4.7)

− 2E(x,T)

[∫ T

0

∫ T

0
|∇||

τ∇||
σ Fτ |2 dτ dσ

]
.

(R1) =⇒ (H3): To prove (H3), let G = F2 and consider the evolution equation for
Xτ := G−1

τ |∇HGτ|2 − 2Gτ log(Gτ), which satisfies

dXτ = 〈∇||
τ Xτ , dWτ〉+ 2Gτ

(∫ T

0
|∇||

τ∇||
σ log(Gτ)|2 dσ

)
dτ

+ G−1
τ

(∫ T

0
(ġ + 2Rc)τ(∇||

τ Fτ ,∇||
σ Fτ) dσ

)
dτ

≥ 〈∇||
τ Xτ , dWτ〉+ 2Gτ

(∫ T

0
|∇||

τ∇||
σ log(Gτ)|2 dσ

)
dτ (4.8)

by Itô calculus and Proposition 3.3 (cf. Proposition 4.23 of [HN18b]). Next, integrate the
inequality (4.8) from 0 to T with respect to τ and take expectations to get

E(x,T)[XT ]− E(x,T)[X0] ≥ 2E(x,T)

[
Gτ

(∫ T

0
|∇||

τ∇||
σ log(Gτ)|2 dσ

)
dτ

]
, (4.9)
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and evaluating the two expectations in the difference, namely

E(x,T)[X0] = E(x,T)[G
−1
0 |∇HG0|2 − 2G0 log(G0)]

= 0 − 2G0 log(G0)

= −2E(x,T)[F
2] log

(
E(x,T)[F

2]
)

(4.10)

and

E(x,T)[XT ] = E(x,T)

[
G−1|∇HG|2 − 2G log(G)

]

= E(x,T)

[
F−2|∇HF2|2

]
− 2E(x,T)

[
F2 log(F2)

]

= 4E(x,T)

[
|∇HF|2

]
− 2E(x,T)

[
F2 log(F2)

]
. (4.11)

Finally we observe that

E(x,T)

[
|∇HF|2

]
= E(x,T)

[∫ T

0
|∇||

σ F|2 dσ

]
, (4.12)

and then combine this and the aforementioned results to prove the claim.

4.4 Proof of the Characterizations of Solutions of the Ricci Flow

The following result reproves a theorem by Haslhofer and Naber (cf. Theorem 1.22 of
[HN18a]), characterizing solutions of the Ricci flow, using the Bochner formulas on path
space that were developed in the previous section.

Proof of Theorem 1.5. (G1) =⇒ (R2): To prove (R2), we evaluate (G1) at σ = τ = 0,

∣∣∣∇xE(x,t)[F]
∣∣∣ = |∇xF0|

(G1)
≤ E(x,T)

[
|∇||

0 F|
∣∣Σ0

]
= E(x,T)

[
|∇||

0 F|
]

. (4.13)

(G2) =⇒ (R3): To prove (R3), we evaluate (G2) at σ, τ = 0 (and observe that d[F, F]τ =

2|∇||
τ Fτ |2 dτ by Theorem 3.2),

E(x,T)

[
d[F, F]τ

dτ

]
= 2E(x,T)

[
|∇||

τ Fτ |2
]

(G2)
≤ 2E(x,T)

[
E(x,T)

[
|∇||

τ F|2
∣∣Στ

]]

≤ 2E(x,T)

[
|∇||

τ F|2
]

. (4.14)

(G1) =⇒ (R4): To prove (R4), we set σ = τ and take expectations

E(x,T)

[
|∇||

σ Fσ|
]
≤ E(x,T)

[
E(x,T)

[
|∇||

σ F|
∣∣Σσ

]]
= E(x,T)

[
|∇||

σ F|
]

. (4.15)
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Then follow the proof of (H3) in Theorem 1.4 and evaluate the expectation E(x,T)[Xτj
] for

j ∈ {1, 2}, namely

E(x,T)[Xτj
] = E(x,T)

[
G−1

τj
|∇HGτj

|2
]
− 2E(x,T)

[
Gτj

log(Gτj
)
]

(4.16)

and taking differences, where E(x,T)[Xτ2 | Στ1
] − E(x,T)[Xτ1

| Στ1
] ≥ 0, as in the earlier

proof. It remains to check that

E(x,T)

[
G−1

τ2
|∇HGτ2 |2 | Στ1

]
− E(x,T)

[
G−1

τ1
|∇HGτ1

|2 | Στ1

]

= 4E(x,T)

[
|∇HFτ2 |2 | Στ1

]

= 4E(x,T)

[∫ τ2

τ1

|∇||
σ Fτ2 |2 dσ

]

≤ 4E(x,T)

[∫ τ2

τ1

|∇||
σ F|2 dσ

]
(τ → |∇||

σ Fτ |2 is a submartingale)

= 4E(x,T)

[
〈F,L(τ1 ,τ2)F〉H

]
. (4.17)

(G2) =⇒ (R5): To prove (R5), we set σ = τ and take expectations

E(x,T)

[
|∇||

σ Fσ|2
]
≤ E(x,T)

[
E(x,T)

[
|∇||

σ F|2
∣∣Σσ

]]
= E(x,T)

[
|∇||

σ F|2
]

. (4.18)

Then follow the proof of (H2) in Theorem 1.4 and apply Itô isometry

E(x,T)

[
(Fτ2 − Fτ1

)2 | Στ1

]
= E(x,T)

[∫ T

0
|∇||

σ Fτ2 |2 dσ

∣∣∣∣Στ1

]

= E(x,T)

[∫ τ2

τ1

|∇||
σ Fτ2 |2 dσ

]

≤ E(x,T)

[
〈F,L(τ1 ,τ2)F〉H

]
. (4.19)

The converse implications shall be proven in the next section.

4.5 Converse Implications

We shall now prove the converse implications below.

Proof. (C3) =⇒ (R1): First fix (x, T) ∈ M and v ∈ (Tx M, gT) a unit vector and choose a
smooth compactly supported f1 : M → R such that

f1(x) = 0, ∇ f1(x) = v, ∇2 f1(x) = 0 (4.20)

using exponential coordinates. Consider the one-point cylinder function given by F(γ) =
f1(πM(γ(ε))), F : P(x,T)M → R and observe for τ ≤ ε that

∇||
τ Fτ = Pτ∇HT−τ,T f1(πM(γ(τ))), |∇||

τ∇||
0 Fτ | = |∇2HT−τ,T f1|(πM(γ(τ))). (4.21)
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In particular, ∇||
τ Fτ = v + o(ε) and |∇||

τ∇||
0 Fτ | = o(ε). Then, by Theorem 3.4,

τ → |∇||
0 Fτ |2 −

∫ τ

0

(
2|∇||

ρ∇||
0 Fρ|2 + (ġ + 2Rc)ρ(∇||

ρ Fρ,∇||
0 Fρ)

)
dρ (4.22)

is a martingale. So, in particular,

|∇||
0 F0|2 = E

[
|∇||

0 Fε|2
]
− ε(ġ + 2Rc)ε(v, v) + o(ε). (4.23)

Moreover, since τ → |∇||
0 Fτ |2 is a submartingale by (C3), it follows that

(ġ + 2Rc)ε(v, v) ≥ ε−1o(ε). (4.24)

Next choose a smooth compactly supported f2 : M × M → R such that

f2(x, x) = 0, ∇(1) f2(x, x) = 2v, ∇(2) f2(x, x) = −v, ∇2 f2(x, x) = 0, (4.25)

for example f2(y, z) = 2 f1(y)− f1(z). Consider the two-point cylinder function given by
F(γ) = f2(πM(γ(0)), πM(γ(ε))), F : P(x,T)M → R and observe for τ ≤ ε that





∇||
0 Fτ = ∇(1) f2(x, πM(γ(τ))) + Pτ∇H

(2)
T−τ,T f2(x, πM(γ(τ)))

∇||
τ Fτ = Pτ∇H

(2)
T−τ,T f2(x, πM(γ(τ)))

|∇||
τ∇||

0 Fτ | ≤ |∇2 f2|(x, πM(γ(τ))) + |∇2H
(2)
T−τ,T f2|(x, πM(γ(τ))).

(4.26)

In particular, ∇||
0 Fτ = v + o(ε), ∇||

τ Fτ = −v + o(ε) and |∇||
τ∇||

0 Fτ | = o(ε). Then, again by
Theorem 3.4,

|∇||
0 F0|2 = E

[
|∇||

0 Fε|2
]
+ τ(ġ + 2Rc)ε(v, v) + o(ε). (4.27)

Moreover, since τ → |∇||
0 Fτ |2 is a submartingale by (C3), it follows that

(ġ + 2Rc)ε(v, v) ≤ τ−1o(ε). (4.28)

We can then deduce that (R1) is satisfied by taking ε → 0+ in equations (4.24) and (4.28).

To check the remaining converse implications, one can substitute 1-point and 2-point
cylinder functions as above. However, there are some alternative tools that can close
the loop of equivalencies more readily. For example, applying the log-Sobolev equality to
F2 = 1 + εG in (R4) gives the Poincaré inequality in (R5). Moreover, dividing by T − τ,

taking T − τ → 0+ and using the quadratic variation d[F, F]τ = 2|∇||
τ Fτ |2 dτ (by Theo-

rem 3.2), (R3) can be derived from (R5). In short, some implications can be done directly
without the need to appeal to test functions each time.
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